Fatigue Life Estimation Model of Repaired Components with the Expanded Stop-Hole Technique

Fatigue crack growth tests are conducted to assess the efficacy of the stop-hole crack repair method. This straightforward and widely adopted technique involves drilling a hole at the crack tip and subsequently enlarging it using a pin inserted into the hole. A fracture mechanics-based model is prop...

Full description

Bibliographic Details
Main Authors: Wilmer Velilla-Díaz, Roger Pinzón, Renny Guillén-Rujano, José David Pérez-Ruiz, Luis Norberto López de Lacalle, Argemiro Palencia, Heriberto Maury, Habib R. Zambrano
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/14/2/182
_version_ 1797297495864246272
author Wilmer Velilla-Díaz
Roger Pinzón
Renny Guillén-Rujano
José David Pérez-Ruiz
Luis Norberto López de Lacalle
Argemiro Palencia
Heriberto Maury
Habib R. Zambrano
author_facet Wilmer Velilla-Díaz
Roger Pinzón
Renny Guillén-Rujano
José David Pérez-Ruiz
Luis Norberto López de Lacalle
Argemiro Palencia
Heriberto Maury
Habib R. Zambrano
author_sort Wilmer Velilla-Díaz
collection DOAJ
description Fatigue crack growth tests are conducted to assess the efficacy of the stop-hole crack repair method. This straightforward and widely adopted technique involves drilling a hole at the crack tip and subsequently enlarging it using a pin inserted into the hole. A fracture mechanics-based model is proposed to estimate the extension of fatigue life achieved through the implementation of the stop-hole technique. The model’s predictions are validated using data obtained from fatigue crack growth tests conducted on both unrepaired and repaired M(T) specimens, following the guidelines outlined in the ASTM E647 standard. The error of the fracture mechanics-based model was 1.4% in comparison with the fatigue tests.
first_indexed 2024-03-07T22:22:05Z
format Article
id doaj.art-ae13fa276c804922b36d899c8f2efd47
institution Directory Open Access Journal
issn 2075-4701
language English
last_indexed 2024-03-07T22:22:05Z
publishDate 2024-02-01
publisher MDPI AG
record_format Article
series Metals
spelling doaj.art-ae13fa276c804922b36d899c8f2efd472024-02-23T15:27:18ZengMDPI AGMetals2075-47012024-02-0114218210.3390/met14020182Fatigue Life Estimation Model of Repaired Components with the Expanded Stop-Hole TechniqueWilmer Velilla-Díaz0Roger Pinzón1Renny Guillén-Rujano2José David Pérez-Ruiz3Luis Norberto López de Lacalle4Argemiro Palencia5Heriberto Maury6Habib R. Zambrano7Institute of Mechanical Engineering, Universidad Austral de Chile, Valdivia 5110566, ChileDepartment of Mechanical Engineering, Universidad del Norte, Barranquilla 081007, ColombiaInstitute of Mechanical Engineering, Universidad Austral de Chile, Valdivia 5110566, ChileAeronautics Advanced Manufacturing Centre, University of the Basque Country, 48170 Zamudio, SpainAeronautics Advanced Manufacturing Centre, University of the Basque Country, 48170 Zamudio, SpainFaculty of Engineering, Universidad Tecnológica de Bolívar, Cartagena 131007, ColombiaDepartment of Mechanical Engineering, Universidad del Norte, Barranquilla 081007, ColombiaDepartment of Mechanical Engineering, Universidad del Norte, Barranquilla 081007, ColombiaFatigue crack growth tests are conducted to assess the efficacy of the stop-hole crack repair method. This straightforward and widely adopted technique involves drilling a hole at the crack tip and subsequently enlarging it using a pin inserted into the hole. A fracture mechanics-based model is proposed to estimate the extension of fatigue life achieved through the implementation of the stop-hole technique. The model’s predictions are validated using data obtained from fatigue crack growth tests conducted on both unrepaired and repaired M(T) specimens, following the guidelines outlined in the ASTM E647 standard. The error of the fracture mechanics-based model was 1.4% in comparison with the fatigue tests.https://www.mdpi.com/2075-4701/14/2/182fatigue crack growthstop-holesfracture mechanicsmathematical modelcrack arrest
spellingShingle Wilmer Velilla-Díaz
Roger Pinzón
Renny Guillén-Rujano
José David Pérez-Ruiz
Luis Norberto López de Lacalle
Argemiro Palencia
Heriberto Maury
Habib R. Zambrano
Fatigue Life Estimation Model of Repaired Components with the Expanded Stop-Hole Technique
Metals
fatigue crack growth
stop-holes
fracture mechanics
mathematical model
crack arrest
title Fatigue Life Estimation Model of Repaired Components with the Expanded Stop-Hole Technique
title_full Fatigue Life Estimation Model of Repaired Components with the Expanded Stop-Hole Technique
title_fullStr Fatigue Life Estimation Model of Repaired Components with the Expanded Stop-Hole Technique
title_full_unstemmed Fatigue Life Estimation Model of Repaired Components with the Expanded Stop-Hole Technique
title_short Fatigue Life Estimation Model of Repaired Components with the Expanded Stop-Hole Technique
title_sort fatigue life estimation model of repaired components with the expanded stop hole technique
topic fatigue crack growth
stop-holes
fracture mechanics
mathematical model
crack arrest
url https://www.mdpi.com/2075-4701/14/2/182
work_keys_str_mv AT wilmervelilladiaz fatiguelifeestimationmodelofrepairedcomponentswiththeexpandedstopholetechnique
AT rogerpinzon fatiguelifeestimationmodelofrepairedcomponentswiththeexpandedstopholetechnique
AT rennyguillenrujano fatiguelifeestimationmodelofrepairedcomponentswiththeexpandedstopholetechnique
AT josedavidperezruiz fatiguelifeestimationmodelofrepairedcomponentswiththeexpandedstopholetechnique
AT luisnorbertolopezdelacalle fatiguelifeestimationmodelofrepairedcomponentswiththeexpandedstopholetechnique
AT argemiropalencia fatiguelifeestimationmodelofrepairedcomponentswiththeexpandedstopholetechnique
AT heribertomaury fatiguelifeestimationmodelofrepairedcomponentswiththeexpandedstopholetechnique
AT habibrzambrano fatiguelifeestimationmodelofrepairedcomponentswiththeexpandedstopholetechnique