Higher rank K-theoretic Donaldson-Thomas Theory of points

We exploit the critical structure on the Quot scheme $\text {Quot}_{{{\mathbb {A}}}^3}({\mathscr {O}}^{\oplus r}\!,n)$, in particular the associated symmetric obstruction theory, in order to study rank r K-theoretic Donaldson-Thomas (DT) invariants of the local Calabi-Yau $3$-fold ${{\mathbb {A}}}^3...

Full description

Bibliographic Details
Main Authors: Nadir Fasola, Sergej Monavari, Andrea T. Ricolfi
Format: Article
Language:English
Published: Cambridge University Press 2021-01-01
Series:Forum of Mathematics, Sigma
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050509421000049/type/journal_article
_version_ 1811156192696729600
author Nadir Fasola
Sergej Monavari
Andrea T. Ricolfi
author_facet Nadir Fasola
Sergej Monavari
Andrea T. Ricolfi
author_sort Nadir Fasola
collection DOAJ
description We exploit the critical structure on the Quot scheme $\text {Quot}_{{{\mathbb {A}}}^3}({\mathscr {O}}^{\oplus r}\!,n)$, in particular the associated symmetric obstruction theory, in order to study rank r K-theoretic Donaldson-Thomas (DT) invariants of the local Calabi-Yau $3$-fold ${{\mathbb {A}}}^3$. We compute the associated partition function as a plethystic exponential, proving a conjecture proposed in string theory by Awata-Kanno and Benini-Bonelli-Poggi-Tanzini. A crucial step in the proof is the fact, nontrival if $r>1$, that the invariants do not depend on the equivariant parameters of the framing torus $({{\mathbb {C}}}^\ast )^r$. Reducing from K-theoretic to cohomological invariants, we compute the corresponding DT invariants, proving a conjecture of Szabo. Reducing further to enumerative DT invariants, we solve the higher rank DT theory of a pair $(X,F)$, where F is an equivariant exceptional locally free sheaf on a projective toric $3$-fold X.
first_indexed 2024-04-10T04:47:24Z
format Article
id doaj.art-ae23d1d846bf4cda9632b4d6854a1d75
institution Directory Open Access Journal
issn 2050-5094
language English
last_indexed 2024-04-10T04:47:24Z
publishDate 2021-01-01
publisher Cambridge University Press
record_format Article
series Forum of Mathematics, Sigma
spelling doaj.art-ae23d1d846bf4cda9632b4d6854a1d752023-03-09T12:34:52ZengCambridge University PressForum of Mathematics, Sigma2050-50942021-01-01910.1017/fms.2021.4Higher rank K-theoretic Donaldson-Thomas Theory of pointsNadir Fasola0https://orcid.org/0000-0001-6222-3873Sergej Monavari1https://orcid.org/0000-0002-0181-8977Andrea T. Ricolfi2https://orcid.org/0000-0002-8172-2026SISSA Trieste, Via Bonomea 265, 34136 Trieste; E-mail:Mathematical Institute, Utrecht University, 3584 CD Utrecht; E-mail:SISSA Trieste, Via Bonomea 265, 34136 Trieste; E-mail:We exploit the critical structure on the Quot scheme $\text {Quot}_{{{\mathbb {A}}}^3}({\mathscr {O}}^{\oplus r}\!,n)$, in particular the associated symmetric obstruction theory, in order to study rank r K-theoretic Donaldson-Thomas (DT) invariants of the local Calabi-Yau $3$-fold ${{\mathbb {A}}}^3$. We compute the associated partition function as a plethystic exponential, proving a conjecture proposed in string theory by Awata-Kanno and Benini-Bonelli-Poggi-Tanzini. A crucial step in the proof is the fact, nontrival if $r>1$, that the invariants do not depend on the equivariant parameters of the framing torus $({{\mathbb {C}}}^\ast )^r$. Reducing from K-theoretic to cohomological invariants, we compute the corresponding DT invariants, proving a conjecture of Szabo. Reducing further to enumerative DT invariants, we solve the higher rank DT theory of a pair $(X,F)$, where F is an equivariant exceptional locally free sheaf on a projective toric $3$-fold X.https://www.cambridge.org/core/product/identifier/S2050509421000049/type/journal_article14N3514C05
spellingShingle Nadir Fasola
Sergej Monavari
Andrea T. Ricolfi
Higher rank K-theoretic Donaldson-Thomas Theory of points
Forum of Mathematics, Sigma
14N35
14C05
title Higher rank K-theoretic Donaldson-Thomas Theory of points
title_full Higher rank K-theoretic Donaldson-Thomas Theory of points
title_fullStr Higher rank K-theoretic Donaldson-Thomas Theory of points
title_full_unstemmed Higher rank K-theoretic Donaldson-Thomas Theory of points
title_short Higher rank K-theoretic Donaldson-Thomas Theory of points
title_sort higher rank k theoretic donaldson thomas theory of points
topic 14N35
14C05
url https://www.cambridge.org/core/product/identifier/S2050509421000049/type/journal_article
work_keys_str_mv AT nadirfasola higherrankktheoreticdonaldsonthomastheoryofpoints
AT sergejmonavari higherrankktheoreticdonaldsonthomastheoryofpoints
AT andreatricolfi higherrankktheoreticdonaldsonthomastheoryofpoints