Green Synthesis of Co-Zn Spinel Ferrite Nanoparticles: Magnetic and Intrinsic Antimicrobial Properties

Spinel ferrite magnetic nanoparticles have attracted considerable attention because of their high and flexible magnetic properties and biocompatibility. In this work, a set of magnetic nanoparticles of cobalt ferrite doped with zinc was synthesized via the eco-friendly sol-gel auto-combustion method...

Full description

Bibliographic Details
Main Authors: Alexander Omelyanchik, Kateryna Levada, Stanislav Pshenichnikov, Maryam Abdolrahim, Miran Baricic, Anastasiya Kapitunova, Alima Galieva, Stanislav Sukhikh, Lidiia Astakhova, Sergey Antipov, Bruno Fabiano, Davide Peddis, Valeria Rodionova
Format: Article
Language:English
Published: MDPI AG 2020-11-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/13/21/5014
Description
Summary:Spinel ferrite magnetic nanoparticles have attracted considerable attention because of their high and flexible magnetic properties and biocompatibility. In this work, a set of magnetic nanoparticles of cobalt ferrite doped with zinc was synthesized via the eco-friendly sol-gel auto-combustion method. Obtained particles displayed a room-temperature ferromagnetic behavior with tuned by chemical composition values of saturation magnetization and coercivity. The maximal values of saturation magnetization ~74 Am<sup>2</sup>/kg were found in cobalt ferrite nanoparticles with a 15–35% molar fraction of cobalt replaced by zinc ions. At the same time, the coercivity exhibited a gradually diminishing trend from ~140 to ~5 mT whereas the concentration of zinc was increased from 0 to 100%. Consequently, nanoparticles produced by the proposed method possess highly adjustable magnetic properties to satisfy the requirement of a wide range of possible applications. Further prepared nanoparticles were tested with bacterial culture to display the influence of chemical composition and magnetic structure on nanoparticles-bacterial cell interaction.
ISSN:1996-1944