On strong uniform distribution IV

<p/> <p>Let <inline-formula><graphic file="1029-242X-2005-639193-i1.gif"/></inline-formula> be a strictly increasing sequence of natural numbers and let <inline-formula><graphic file="1029-242X-2005-639193-i2.gif"/></inline-formula>...

Full description

Bibliographic Details
Main Author: Nair R
Format: Article
Language:English
Published: SpringerOpen 2005-01-01
Series:Journal of Inequalities and Applications
Online Access:http://www.journalofinequalitiesandapplications.com/content/2005/639193
_version_ 1818307988043071488
author Nair R
author_facet Nair R
author_sort Nair R
collection DOAJ
description <p/> <p>Let <inline-formula><graphic file="1029-242X-2005-639193-i1.gif"/></inline-formula> be a strictly increasing sequence of natural numbers and let <inline-formula><graphic file="1029-242X-2005-639193-i2.gif"/></inline-formula> be a space of Lebesgue measurable functions defined on <inline-formula><graphic file="1029-242X-2005-639193-i3.gif"/></inline-formula>. Let <inline-formula><graphic file="1029-242X-2005-639193-i4.gif"/></inline-formula> denote the fractional part of the real number <inline-formula><graphic file="1029-242X-2005-639193-i5.gif"/></inline-formula>. We say that <inline-formula><graphic file="1029-242X-2005-639193-i6.gif"/></inline-formula> is an <inline-formula><graphic file="1029-242X-2005-639193-i7.gif"/></inline-formula> sequence if for each <inline-formula><graphic file="1029-242X-2005-639193-i8.gif"/></inline-formula> we set <inline-formula><graphic file="1029-242X-2005-639193-i9.gif"/></inline-formula> <inline-formula><graphic file="1029-242X-2005-639193-i10.gif"/></inline-formula>, then <inline-formula><graphic file="1029-242X-2005-639193-i11.gif"/></inline-formula>, almost everywhere with respect to Lebesgue measure. Let <inline-formula><graphic file="1029-242X-2005-639193-i12.gif"/></inline-formula> <inline-formula><graphic file="1029-242X-2005-639193-i13.gif"/></inline-formula>. In this paper, we show that if <inline-formula><graphic file="1029-242X-2005-639193-i14.gif"/></inline-formula> is an <inline-formula><graphic file="1029-242X-2005-639193-i15.gif"/></inline-formula> for <inline-formula><graphic file="1029-242X-2005-639193-i16.gif"/></inline-formula>, then there exists <inline-formula><graphic file="1029-242X-2005-639193-i17.gif"/></inline-formula> such that if <inline-formula><graphic file="1029-242X-2005-639193-i18.gif"/></inline-formula> denotes <inline-formula><graphic file="1029-242X-2005-639193-i19.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-2005-639193-i20.gif"/></inline-formula> <inline-formula><graphic file="1029-242X-2005-639193-i21.gif"/></inline-formula>. We also show that for any <inline-formula><graphic file="1029-242X-2005-639193-i22.gif"/></inline-formula> sequence <inline-formula><graphic file="1029-242X-2005-639193-i23.gif"/></inline-formula> and any nonconstant integrable function <inline-formula><graphic file="1029-242X-2005-639193-i24.gif"/></inline-formula> on the interval <inline-formula><graphic file="1029-242X-2005-639193-i25.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-2005-639193-i26.gif"/></inline-formula>, almost everywhere with respect to Lebesgue measure.</p>
first_indexed 2024-12-13T07:07:07Z
format Article
id doaj.art-ae345c2f59cf4fb68ba9e4b5fb0bcae8
institution Directory Open Access Journal
issn 1025-5834
1029-242X
language English
last_indexed 2024-12-13T07:07:07Z
publishDate 2005-01-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-ae345c2f59cf4fb68ba9e4b5fb0bcae82022-12-21T23:55:48ZengSpringerOpenJournal of Inequalities and Applications1025-58341029-242X2005-01-0120053639193On strong uniform distribution IVNair R<p/> <p>Let <inline-formula><graphic file="1029-242X-2005-639193-i1.gif"/></inline-formula> be a strictly increasing sequence of natural numbers and let <inline-formula><graphic file="1029-242X-2005-639193-i2.gif"/></inline-formula> be a space of Lebesgue measurable functions defined on <inline-formula><graphic file="1029-242X-2005-639193-i3.gif"/></inline-formula>. Let <inline-formula><graphic file="1029-242X-2005-639193-i4.gif"/></inline-formula> denote the fractional part of the real number <inline-formula><graphic file="1029-242X-2005-639193-i5.gif"/></inline-formula>. We say that <inline-formula><graphic file="1029-242X-2005-639193-i6.gif"/></inline-formula> is an <inline-formula><graphic file="1029-242X-2005-639193-i7.gif"/></inline-formula> sequence if for each <inline-formula><graphic file="1029-242X-2005-639193-i8.gif"/></inline-formula> we set <inline-formula><graphic file="1029-242X-2005-639193-i9.gif"/></inline-formula> <inline-formula><graphic file="1029-242X-2005-639193-i10.gif"/></inline-formula>, then <inline-formula><graphic file="1029-242X-2005-639193-i11.gif"/></inline-formula>, almost everywhere with respect to Lebesgue measure. Let <inline-formula><graphic file="1029-242X-2005-639193-i12.gif"/></inline-formula> <inline-formula><graphic file="1029-242X-2005-639193-i13.gif"/></inline-formula>. In this paper, we show that if <inline-formula><graphic file="1029-242X-2005-639193-i14.gif"/></inline-formula> is an <inline-formula><graphic file="1029-242X-2005-639193-i15.gif"/></inline-formula> for <inline-formula><graphic file="1029-242X-2005-639193-i16.gif"/></inline-formula>, then there exists <inline-formula><graphic file="1029-242X-2005-639193-i17.gif"/></inline-formula> such that if <inline-formula><graphic file="1029-242X-2005-639193-i18.gif"/></inline-formula> denotes <inline-formula><graphic file="1029-242X-2005-639193-i19.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-2005-639193-i20.gif"/></inline-formula> <inline-formula><graphic file="1029-242X-2005-639193-i21.gif"/></inline-formula>. We also show that for any <inline-formula><graphic file="1029-242X-2005-639193-i22.gif"/></inline-formula> sequence <inline-formula><graphic file="1029-242X-2005-639193-i23.gif"/></inline-formula> and any nonconstant integrable function <inline-formula><graphic file="1029-242X-2005-639193-i24.gif"/></inline-formula> on the interval <inline-formula><graphic file="1029-242X-2005-639193-i25.gif"/></inline-formula>, <inline-formula><graphic file="1029-242X-2005-639193-i26.gif"/></inline-formula>, almost everywhere with respect to Lebesgue measure.</p>http://www.journalofinequalitiesandapplications.com/content/2005/639193
spellingShingle Nair R
On strong uniform distribution IV
Journal of Inequalities and Applications
title On strong uniform distribution IV
title_full On strong uniform distribution IV
title_fullStr On strong uniform distribution IV
title_full_unstemmed On strong uniform distribution IV
title_short On strong uniform distribution IV
title_sort on strong uniform distribution iv
url http://www.journalofinequalitiesandapplications.com/content/2005/639193
work_keys_str_mv AT nairr onstronguniformdistributioniv