Rate and oscillatory switching dynamics of a multilayer visual microcircuit model

The neocortex is organized around layered microcircuits consisting of a variety of excitatory and inhibitory neuronal types which perform rate- and oscillation-based computations. Using modeling, we show that both superficial and deep layers of the primary mouse visual cortex implement two ultrasens...

Full description

Bibliographic Details
Main Authors: Gerald Hahn, Arvind Kumar, Helmut Schmidt, Thomas R Knösche, Gustavo Deco
Format: Article
Language:English
Published: eLife Sciences Publications Ltd 2022-08-01
Series:eLife
Subjects:
Online Access:https://elifesciences.org/articles/77594
Description
Summary:The neocortex is organized around layered microcircuits consisting of a variety of excitatory and inhibitory neuronal types which perform rate- and oscillation-based computations. Using modeling, we show that both superficial and deep layers of the primary mouse visual cortex implement two ultrasensitive and bistable switches built on mutual inhibitory connectivity motives between somatostatin, parvalbumin, and vasoactive intestinal polypeptide cells. The switches toggle pyramidal neurons between high and low firing rate states that are synchronized across layers through translaminar connectivity. Moreover, inhibited and disinhibited states are characterized by low- and high-frequency oscillations, respectively, with layer-specific differences in frequency and power which show asymmetric changes during state transitions. These findings are consistent with a number of experimental observations and embed firing rate together with oscillatory changes within a switch interpretation of the microcircuit.
ISSN:2050-084X