Periodic and Solitary Wave Solutions for the One-Dimensional Cubic Nonlinear Schrödinger Model

Using a similar approach as Korteweg and de Vries, [19], we obtain periodic solutions expressed in terms of the Jacobi elliptic function cn, [3], for the self-focusing and defocusing one-dimensional cubic nonlinear Schrödinger equations. We will show that solitary wave solutions are recovered throug...

Full description

Bibliographic Details
Main Authors: Bica Ion, Mucalica Ana
Format: Article
Language:English
Published: Sciendo 2022-05-01
Series:Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
Subjects:
Online Access:https://doi.org/10.2478/auom-2022-0018
_version_ 1811329539267100672
author Bica Ion
Mucalica Ana
author_facet Bica Ion
Mucalica Ana
author_sort Bica Ion
collection DOAJ
description Using a similar approach as Korteweg and de Vries, [19], we obtain periodic solutions expressed in terms of the Jacobi elliptic function cn, [3], for the self-focusing and defocusing one-dimensional cubic nonlinear Schrödinger equations. We will show that solitary wave solutions are recovered through a limiting process after the elliptic modulus of the Jacobi elliptic function cn that describes the periodic solutions for the self-focusing nonlinear Schrödinger model.
first_indexed 2024-04-13T15:45:40Z
format Article
id doaj.art-ae4e7406952346b2b9d47200ee6e18d3
institution Directory Open Access Journal
issn 1844-0835
language English
last_indexed 2024-04-13T15:45:40Z
publishDate 2022-05-01
publisher Sciendo
record_format Article
series Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
spelling doaj.art-ae4e7406952346b2b9d47200ee6e18d32022-12-22T02:41:00ZengSciendoAnalele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica1844-08352022-05-01302456210.2478/auom-2022-0018Periodic and Solitary Wave Solutions for the One-Dimensional Cubic Nonlinear Schrödinger ModelBica Ion0Mucalica Ana1Department of Mathematics and Statistics, MacEwan University, 10700 104 Ave NW, Edmonton, AB, Canada, T5J 4S2.Department of Mathematics and Statistics, MacEwan University, 10700 104 Ave NW, Edmonton, AB, Canada, T5J 4S2.Using a similar approach as Korteweg and de Vries, [19], we obtain periodic solutions expressed in terms of the Jacobi elliptic function cn, [3], for the self-focusing and defocusing one-dimensional cubic nonlinear Schrödinger equations. We will show that solitary wave solutions are recovered through a limiting process after the elliptic modulus of the Jacobi elliptic function cn that describes the periodic solutions for the self-focusing nonlinear Schrödinger model.https://doi.org/10.2478/auom-2022-0018nlsself-focusingdefocusingdispersivenonlinearitycarrier wavessolution profileenvelopecnoidal wavessolitary wavessurface gravity wavessound waveswater-air interfacesonic layer depthprimary 33e05, 35q55secondary 35q53
spellingShingle Bica Ion
Mucalica Ana
Periodic and Solitary Wave Solutions for the One-Dimensional Cubic Nonlinear Schrödinger Model
Analele Stiintifice ale Universitatii Ovidius Constanta: Seria Matematica
nls
self-focusing
defocusing
dispersive
nonlinearity
carrier waves
solution profile
envelope
cnoidal waves
solitary waves
surface gravity waves
sound waves
water-air interface
sonic layer depth
primary 33e05, 35q55
secondary 35q53
title Periodic and Solitary Wave Solutions for the One-Dimensional Cubic Nonlinear Schrödinger Model
title_full Periodic and Solitary Wave Solutions for the One-Dimensional Cubic Nonlinear Schrödinger Model
title_fullStr Periodic and Solitary Wave Solutions for the One-Dimensional Cubic Nonlinear Schrödinger Model
title_full_unstemmed Periodic and Solitary Wave Solutions for the One-Dimensional Cubic Nonlinear Schrödinger Model
title_short Periodic and Solitary Wave Solutions for the One-Dimensional Cubic Nonlinear Schrödinger Model
title_sort periodic and solitary wave solutions for the one dimensional cubic nonlinear schrodinger model
topic nls
self-focusing
defocusing
dispersive
nonlinearity
carrier waves
solution profile
envelope
cnoidal waves
solitary waves
surface gravity waves
sound waves
water-air interface
sonic layer depth
primary 33e05, 35q55
secondary 35q53
url https://doi.org/10.2478/auom-2022-0018
work_keys_str_mv AT bicaion periodicandsolitarywavesolutionsfortheonedimensionalcubicnonlinearschrodingermodel
AT mucalicaana periodicandsolitarywavesolutionsfortheonedimensionalcubicnonlinearschrodingermodel