Mixed-Type Skyrmions in Symmetric Pt/Co/Pt Multilayers at Room Temperature

We demonstrate the generation of mixed-type skyrmions (all are about 200 nm) that are primarily Bloch-type, hybrid-type, and a negligible amount of Néel-type in symmetric Pt/Co(1.55)/Pt multilayers at room temperature. The magnetic field dependence of skyrmion evolution is reversible. Brillouin ligh...

Full description

Bibliographic Details
Main Authors: Min He, Tiankuo Xu, Yang Gao, Chaoqun Hu, Jianwang Cai, Ying Zhang
Format: Article
Language:English
Published: MDPI AG 2022-11-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/15/22/8272
Description
Summary:We demonstrate the generation of mixed-type skyrmions (all are about 200 nm) that are primarily Bloch-type, hybrid-type, and a negligible amount of Néel-type in symmetric Pt/Co(1.55)/Pt multilayers at room temperature. The magnetic field dependence of skyrmion evolution is reversible. Brillouin light-scattering is used to quantitatively quantify the Dzyaloshinskii-Moriya interaction constant D in order to comprehend the mechanism. Interestingly, the D value is high enough to generate skyrmions in a symmetric sandwich structure. Micromagnetic simulations show that Néel-type skyrmions transform into Bloch-type skyrmions as the D value decreases. The interface-induced non-uniform D may be the cause to generate mixed-type skyrmions. This work broadens the flexibility to generate skyrmions by engineering skyrmion-based devices with nominally symmetric multilayers without the requirement of very large DMI.
ISSN:1996-1944