Corrosion Inhibition Performances of Imidazole Derivatives-Based New Ionic Liquids on Carbon Steel in Brackish Water

In this study, imidazole derivative-based new ionic liquids were investigated as corrosion inhibitors. These new ionic liquids (ILs) are 1,3-dipropyl-2-(2-propoxyphenyl)-4,5-diphenylimidazole iodide (IL1) and 1,3-dibutyl-2-(2-butoxyphenyl)-4,5-diphenylimidazole iodide (IL2). The corrosion inhibition...

Full description

Bibliographic Details
Main Authors: Megawati Zunita, Deana Wahyuningrum, Buchari, Bunbun Bundjali, I Gede Wenten, Ramaraj Boopathy
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/10/20/7069
Description
Summary:In this study, imidazole derivative-based new ionic liquids were investigated as corrosion inhibitors. These new ionic liquids (ILs) are 1,3-dipropyl-2-(2-propoxyphenyl)-4,5-diphenylimidazole iodide (IL1) and 1,3-dibutyl-2-(2-butoxyphenyl)-4,5-diphenylimidazole iodide (IL2). The corrosion inhibition effects of two new ILs were observed on carbon steel in brackish water media (1% NaCl solution). Carbon steel coupons were exposed to 1% NaCl solution with various concentrations of ILs. Corrosion inhibition effects were tested by the electrochemical impedance spectroscopy (EIS) method and the Tafel method at various temperatures ranging from 25 °C to 55 °C. The results showed that ILs have potential as corrosion inhibitors and the adsorption mechanisms of IL1 and IL2 on carbon steel surfaces were also determined, which followed the Langmuir adsorption isotherm model. Acquisition of ∆G<sub>ads</sub> values of IL1 and IL2 were −35.04 and −34.04 kJ/mol, respectively. The thermodynamic data of the ILs show that semi-chemical and or physical adsorptions occurred on carbon steel surfaces.
ISSN:2076-3417