Research on Image Identification Method of Rock Thin Slices in Tight Oil Reservoirs Based on Mask R-CNN

Terrestrial tight oil has extremely strong diagenesis heterogeneity, so a large number of rock thin slices are needed to reveal the real microscopic pore-throat structure characteristics. In addition, difficult identification, high cost, long time, strong subjectivity and other problems exist in the...

Full description

Bibliographic Details
Main Authors: Tao Liu, Chunsheng Li, Zongbao Liu, Kejia Zhang, Fang Liu, Dongsheng Li, Yan Zhang, Zhigang Liu, Liyuan Liu, Jiacheng Huang
Format: Article
Language:English
Published: MDPI AG 2022-08-01
Series:Energies
Subjects:
Online Access:https://www.mdpi.com/1996-1073/15/16/5818
Description
Summary:Terrestrial tight oil has extremely strong diagenesis heterogeneity, so a large number of rock thin slices are needed to reveal the real microscopic pore-throat structure characteristics. In addition, difficult identification, high cost, long time, strong subjectivity and other problems exist in the identification of tight oil rock thin slices, and it is difficult to meet the needs of fine description and quantitative characterization of the reservoir. In this paper, a method for identifying the characteristics of rock thin slices in tight oil reservoirs based on the deep learning technique was proposed. The present work has the following steps: first, the image preprocessing technique was studied. The original image noise was removed by filtering, and the image pixel size was unified by a normalization technique to ensure the quality of samples; second, the self-labeling image data augmentation technique was constructed to solve the problem of sparse samples; third, the Mask R-CNN algorithm was introduced and improved to synchronize the segmentation and recognition of rock thin slice components in tight oil reservoirs; Finally, it was demonstrated through experiments that the SMR method has significant advantages in accuracy, execution speed and migration.
ISSN:1996-1073