Porous Polymer Gel Electrolytes Influence Lithium Transference Number and Cycling in Lithium-Ion Batteries

To improve the energy density of lithium-ion batteries, the development of advanced electrolytes with enhanced transport properties is highly important. Here, we show that by confining the conventional electrolyte (1 M LiPF<sub>6</sub> in EC-DEC) in a microporous polymer network, the cat...

Full description

Bibliographic Details
Main Authors: Buket Boz, Hunter O. Ford, Alberto Salvadori, Jennifer L. Schaefer
Format: Article
Language:English
Published: MDPI AG 2021-05-01
Series:Electronic Materials
Subjects:
Online Access:https://www.mdpi.com/2673-3978/2/2/13
_version_ 1797528086356426752
author Buket Boz
Hunter O. Ford
Alberto Salvadori
Jennifer L. Schaefer
author_facet Buket Boz
Hunter O. Ford
Alberto Salvadori
Jennifer L. Schaefer
author_sort Buket Boz
collection DOAJ
description To improve the energy density of lithium-ion batteries, the development of advanced electrolytes with enhanced transport properties is highly important. Here, we show that by confining the conventional electrolyte (1 M LiPF<sub>6</sub> in EC-DEC) in a microporous polymer network, the cation transference number increases to 0.79 while maintaining an ionic conductivity on the order of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> S cm<sup>−1</sup>. By comparison, a non-porous, condensed polymer electrolyte of the same chemistry has a lower transference number and conductivity, of 0.65 and 7.6 × 10<sup>−4</sup> S cm<sup>−1</sup>, respectively. Within Li-metal/LiFePO<sub>4</sub> cells, the improved transport properties of the porous polymer electrolyte enable substantial performance enhancements compared to a commercial separator in terms of rate capability, capacity retention, active material utilization, and efficiency. These results highlight the importance of polymer electrolyte structure–performance property relationships and help guide the future engineering of better materials.
first_indexed 2024-03-10T09:53:06Z
format Article
id doaj.art-ae5bb9b617c3404d9d3009b4f1fbbdab
institution Directory Open Access Journal
issn 2673-3978
language English
last_indexed 2024-03-10T09:53:06Z
publishDate 2021-05-01
publisher MDPI AG
record_format Article
series Electronic Materials
spelling doaj.art-ae5bb9b617c3404d9d3009b4f1fbbdab2023-11-22T02:37:12ZengMDPI AGElectronic Materials2673-39782021-05-012215417310.3390/electronicmat2020013Porous Polymer Gel Electrolytes Influence Lithium Transference Number and Cycling in Lithium-Ion BatteriesBuket Boz0Hunter O. Ford1Alberto Salvadori2Jennifer L. Schaefer3Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USADepartment of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USADepartment of Mechanical and Industrial Engineering, University of Brescia, 38 Via Branze, 25123 Brescia, ItalyDepartment of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USATo improve the energy density of lithium-ion batteries, the development of advanced electrolytes with enhanced transport properties is highly important. Here, we show that by confining the conventional electrolyte (1 M LiPF<sub>6</sub> in EC-DEC) in a microporous polymer network, the cation transference number increases to 0.79 while maintaining an ionic conductivity on the order of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> S cm<sup>−1</sup>. By comparison, a non-porous, condensed polymer electrolyte of the same chemistry has a lower transference number and conductivity, of 0.65 and 7.6 × 10<sup>−4</sup> S cm<sup>−1</sup>, respectively. Within Li-metal/LiFePO<sub>4</sub> cells, the improved transport properties of the porous polymer electrolyte enable substantial performance enhancements compared to a commercial separator in terms of rate capability, capacity retention, active material utilization, and efficiency. These results highlight the importance of polymer electrolyte structure–performance property relationships and help guide the future engineering of better materials.https://www.mdpi.com/2673-3978/2/2/13high transference numbergel polymer electrolyteLi-ion batterycrosslinked poly(ethylene glycol) dimethacrylate
spellingShingle Buket Boz
Hunter O. Ford
Alberto Salvadori
Jennifer L. Schaefer
Porous Polymer Gel Electrolytes Influence Lithium Transference Number and Cycling in Lithium-Ion Batteries
Electronic Materials
high transference number
gel polymer electrolyte
Li-ion battery
crosslinked poly(ethylene glycol) dimethacrylate
title Porous Polymer Gel Electrolytes Influence Lithium Transference Number and Cycling in Lithium-Ion Batteries
title_full Porous Polymer Gel Electrolytes Influence Lithium Transference Number and Cycling in Lithium-Ion Batteries
title_fullStr Porous Polymer Gel Electrolytes Influence Lithium Transference Number and Cycling in Lithium-Ion Batteries
title_full_unstemmed Porous Polymer Gel Electrolytes Influence Lithium Transference Number and Cycling in Lithium-Ion Batteries
title_short Porous Polymer Gel Electrolytes Influence Lithium Transference Number and Cycling in Lithium-Ion Batteries
title_sort porous polymer gel electrolytes influence lithium transference number and cycling in lithium ion batteries
topic high transference number
gel polymer electrolyte
Li-ion battery
crosslinked poly(ethylene glycol) dimethacrylate
url https://www.mdpi.com/2673-3978/2/2/13
work_keys_str_mv AT buketboz porouspolymergelelectrolytesinfluencelithiumtransferencenumberandcyclinginlithiumionbatteries
AT hunteroford porouspolymergelelectrolytesinfluencelithiumtransferencenumberandcyclinginlithiumionbatteries
AT albertosalvadori porouspolymergelelectrolytesinfluencelithiumtransferencenumberandcyclinginlithiumionbatteries
AT jenniferlschaefer porouspolymergelelectrolytesinfluencelithiumtransferencenumberandcyclinginlithiumionbatteries