Porous Polymer Gel Electrolytes Influence Lithium Transference Number and Cycling in Lithium-Ion Batteries
To improve the energy density of lithium-ion batteries, the development of advanced electrolytes with enhanced transport properties is highly important. Here, we show that by confining the conventional electrolyte (1 M LiPF<sub>6</sub> in EC-DEC) in a microporous polymer network, the cat...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-05-01
|
Series: | Electronic Materials |
Subjects: | |
Online Access: | https://www.mdpi.com/2673-3978/2/2/13 |
_version_ | 1797528086356426752 |
---|---|
author | Buket Boz Hunter O. Ford Alberto Salvadori Jennifer L. Schaefer |
author_facet | Buket Boz Hunter O. Ford Alberto Salvadori Jennifer L. Schaefer |
author_sort | Buket Boz |
collection | DOAJ |
description | To improve the energy density of lithium-ion batteries, the development of advanced electrolytes with enhanced transport properties is highly important. Here, we show that by confining the conventional electrolyte (1 M LiPF<sub>6</sub> in EC-DEC) in a microporous polymer network, the cation transference number increases to 0.79 while maintaining an ionic conductivity on the order of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> S cm<sup>−1</sup>. By comparison, a non-porous, condensed polymer electrolyte of the same chemistry has a lower transference number and conductivity, of 0.65 and 7.6 × 10<sup>−4</sup> S cm<sup>−1</sup>, respectively. Within Li-metal/LiFePO<sub>4</sub> cells, the improved transport properties of the porous polymer electrolyte enable substantial performance enhancements compared to a commercial separator in terms of rate capability, capacity retention, active material utilization, and efficiency. These results highlight the importance of polymer electrolyte structure–performance property relationships and help guide the future engineering of better materials. |
first_indexed | 2024-03-10T09:53:06Z |
format | Article |
id | doaj.art-ae5bb9b617c3404d9d3009b4f1fbbdab |
institution | Directory Open Access Journal |
issn | 2673-3978 |
language | English |
last_indexed | 2024-03-10T09:53:06Z |
publishDate | 2021-05-01 |
publisher | MDPI AG |
record_format | Article |
series | Electronic Materials |
spelling | doaj.art-ae5bb9b617c3404d9d3009b4f1fbbdab2023-11-22T02:37:12ZengMDPI AGElectronic Materials2673-39782021-05-012215417310.3390/electronicmat2020013Porous Polymer Gel Electrolytes Influence Lithium Transference Number and Cycling in Lithium-Ion BatteriesBuket Boz0Hunter O. Ford1Alberto Salvadori2Jennifer L. Schaefer3Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USADepartment of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USADepartment of Mechanical and Industrial Engineering, University of Brescia, 38 Via Branze, 25123 Brescia, ItalyDepartment of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USATo improve the energy density of lithium-ion batteries, the development of advanced electrolytes with enhanced transport properties is highly important. Here, we show that by confining the conventional electrolyte (1 M LiPF<sub>6</sub> in EC-DEC) in a microporous polymer network, the cation transference number increases to 0.79 while maintaining an ionic conductivity on the order of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mrow><mn>10</mn></mrow><mrow><mo>−</mo><mn>3</mn></mrow></msup></mrow></semantics></math></inline-formula> S cm<sup>−1</sup>. By comparison, a non-porous, condensed polymer electrolyte of the same chemistry has a lower transference number and conductivity, of 0.65 and 7.6 × 10<sup>−4</sup> S cm<sup>−1</sup>, respectively. Within Li-metal/LiFePO<sub>4</sub> cells, the improved transport properties of the porous polymer electrolyte enable substantial performance enhancements compared to a commercial separator in terms of rate capability, capacity retention, active material utilization, and efficiency. These results highlight the importance of polymer electrolyte structure–performance property relationships and help guide the future engineering of better materials.https://www.mdpi.com/2673-3978/2/2/13high transference numbergel polymer electrolyteLi-ion batterycrosslinked poly(ethylene glycol) dimethacrylate |
spellingShingle | Buket Boz Hunter O. Ford Alberto Salvadori Jennifer L. Schaefer Porous Polymer Gel Electrolytes Influence Lithium Transference Number and Cycling in Lithium-Ion Batteries Electronic Materials high transference number gel polymer electrolyte Li-ion battery crosslinked poly(ethylene glycol) dimethacrylate |
title | Porous Polymer Gel Electrolytes Influence Lithium Transference Number and Cycling in Lithium-Ion Batteries |
title_full | Porous Polymer Gel Electrolytes Influence Lithium Transference Number and Cycling in Lithium-Ion Batteries |
title_fullStr | Porous Polymer Gel Electrolytes Influence Lithium Transference Number and Cycling in Lithium-Ion Batteries |
title_full_unstemmed | Porous Polymer Gel Electrolytes Influence Lithium Transference Number and Cycling in Lithium-Ion Batteries |
title_short | Porous Polymer Gel Electrolytes Influence Lithium Transference Number and Cycling in Lithium-Ion Batteries |
title_sort | porous polymer gel electrolytes influence lithium transference number and cycling in lithium ion batteries |
topic | high transference number gel polymer electrolyte Li-ion battery crosslinked poly(ethylene glycol) dimethacrylate |
url | https://www.mdpi.com/2673-3978/2/2/13 |
work_keys_str_mv | AT buketboz porouspolymergelelectrolytesinfluencelithiumtransferencenumberandcyclinginlithiumionbatteries AT hunteroford porouspolymergelelectrolytesinfluencelithiumtransferencenumberandcyclinginlithiumionbatteries AT albertosalvadori porouspolymergelelectrolytesinfluencelithiumtransferencenumberandcyclinginlithiumionbatteries AT jenniferlschaefer porouspolymergelelectrolytesinfluencelithiumtransferencenumberandcyclinginlithiumionbatteries |