Nearly Sasakian manifolds revisited

We provide a new, self-contained and more conceptual proof of the result that an almost contact metric manifold of dimension greater than 5 is Sasakian if and only if it is nearly Sasakian.

Bibliographic Details
Main Authors: Cappelletti-Montano Beniamino, De Nicola Antonio, Dileo Giulia, Yudin Ivan
Format: Article
Language:English
Published: De Gruyter 2019-01-01
Series:Complex Manifolds
Subjects:
Online Access:https://doi.org/10.1515/coma-2019-0017
_version_ 1818723116090654720
author Cappelletti-Montano Beniamino
De Nicola Antonio
Dileo Giulia
Yudin Ivan
author_facet Cappelletti-Montano Beniamino
De Nicola Antonio
Dileo Giulia
Yudin Ivan
author_sort Cappelletti-Montano Beniamino
collection DOAJ
description We provide a new, self-contained and more conceptual proof of the result that an almost contact metric manifold of dimension greater than 5 is Sasakian if and only if it is nearly Sasakian.
first_indexed 2024-12-17T21:05:24Z
format Article
id doaj.art-ae67d9dad9d3420296841cd34cc7edaa
institution Directory Open Access Journal
issn 2300-7443
language English
last_indexed 2024-12-17T21:05:24Z
publishDate 2019-01-01
publisher De Gruyter
record_format Article
series Complex Manifolds
spelling doaj.art-ae67d9dad9d3420296841cd34cc7edaa2022-12-21T21:32:36ZengDe GruyterComplex Manifolds2300-74432019-01-016132033410.1515/coma-2019-0017coma-2019-0017Nearly Sasakian manifolds revisitedCappelletti-Montano Beniamino0De Nicola Antonio1Dileo Giulia2Yudin Ivan3Dipartimento di Matematica e Informatica, Università degli Studi di Cagliari, Via Ospedale 72, 09124 Cagliari, ItalyDipartimento di Matematica, Università degli Studi di Salerno, Via Giovanni Paolo II 132, 84084Fisciano, ItalyDipartimento di Matematica, Università degli Studi di Bari Aldo Moro, Via E. Orabona 4, 70125Bari, ItalyCMUC, Department of Mathematics, University of Coimbra, 3001-501Coimbra, PortugalWe provide a new, self-contained and more conceptual proof of the result that an almost contact metric manifold of dimension greater than 5 is Sasakian if and only if it is nearly Sasakian.https://doi.org/10.1515/coma-2019-0017primary 53c25, 53d35
spellingShingle Cappelletti-Montano Beniamino
De Nicola Antonio
Dileo Giulia
Yudin Ivan
Nearly Sasakian manifolds revisited
Complex Manifolds
primary 53c25, 53d35
title Nearly Sasakian manifolds revisited
title_full Nearly Sasakian manifolds revisited
title_fullStr Nearly Sasakian manifolds revisited
title_full_unstemmed Nearly Sasakian manifolds revisited
title_short Nearly Sasakian manifolds revisited
title_sort nearly sasakian manifolds revisited
topic primary 53c25, 53d35
url https://doi.org/10.1515/coma-2019-0017
work_keys_str_mv AT cappellettimontanobeniamino nearlysasakianmanifoldsrevisited
AT denicolaantonio nearlysasakianmanifoldsrevisited
AT dileogiulia nearlysasakianmanifoldsrevisited
AT yudinivan nearlysasakianmanifoldsrevisited