Bearing Properties of CFRP Composite Laminates Containing Spread-Tow Thin-Plies

With the development of spread-tow, thin-ply technology, ultra-thin composite laminates could be produced. Composite bolted joints are commonly used on aircraft’s load-bearing structures and are considered the main cause of stress concentration. The aim of this research is to investigate the bolted...

Full description

Bibliographic Details
Main Authors: Hassan Alshahrani, Tamer A. Sebaey
Format: Article
Language:English
Published: MDPI AG 2022-05-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/14/10/2076
Description
Summary:With the development of spread-tow, thin-ply technology, ultra-thin composite laminates could be produced. Composite bolted joints are commonly used on aircraft’s load-bearing structures and are considered the main cause of stress concentration. The aim of this research is to investigate the bolted joint behavior of composite laminates that combine thin-plies and conventional thick-plies in a predetermined stacking sequence. The impact of thin-ply placement within the stack on bearing strength, including the onset of damages, is examined. The work involves mechanical tests and fractographic activities to understand the damage mechanisms of the plies and their interactions, and its reflections on the bearing load capacity of the joint for double-lap bolted joints. The results showed an improvement in the bearing strength of up to 19% by inserting the thin-plies inside the laminate. The visual examination of the specimens showed a bearing damage mode for all the tested specimens. The computed tomography scans showed damage mechanisms that mostly occurred with the normal plies, rather than breaking the thin-plies. For the specimens of traditional plies, delaminations were noticed at most of the interfaces. For the one with a block of thin-plies in the middle, all the delaminations were forced to the surface layers with an extra large size. Forspecimens with distributed thin-plies, a higher number of smaller delaminations was recognized.
ISSN:2073-4360