Application of Deep Learning in Predicting Particle Concentration of Gas–Solid Two-Phase Flow
Particle concentration is an important parameter for describing the state of gas–solid two-phase flow. This study compares the performance of three methods, namely, Back-Propagation Neural Networks (BPNNs), Recurrent Neural Networks (RNNs), and Long Short-Term Memory (LSTM), in handling gas–solid tw...
المؤلفون الرئيسيون: | Zhiyong Wang, Bing Yan, Haoquan Wang |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
MDPI AG
2024-02-01
|
سلاسل: | Fluids |
الموضوعات: | |
الوصول للمادة أونلاين: | https://www.mdpi.com/2311-5521/9/3/59 |
مواد مشابهة
-
Investigation on Dynamic Calibration for an Optical-Fiber Solids Concentration Probe in Gas-Solid Two-Phase Flows
حسب: Changsui Zhao, وآخرون
منشور في: (2013-07-01) -
PollenNet - a deep learning approach to predicting airborne pollen concentrations
حسب: Rebeka Čorić, وآخرون
منشور في: (2023-01-01) -
Numerical simulation of gas-solid two-phase flow behaviors in a coal mill separator
حسب: Penghao WANG, وآخرون
منشور في: (2024-08-01) -
Principles of gas-solid flows /
حسب: 356870 Fan, Liang-Shih, وآخرون
منشور في: (1998) -
Pressure Drop and Particle Settlement of Gas–Solid Two-Phase Flow in a Pipe
حسب: Wenqian Lin, وآخرون
منشور في: (2022-02-01)