Summary: | Absorptive corrections, which are known to suppress proton-neutron transitions with a large fractional momentum <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>z</mi><mo>→</mo><mn>1</mn></mrow></semantics></math></inline-formula> in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mi>p</mi></mrow></semantics></math></inline-formula> collisions, become dramatically strong on a nuclear target, and they push the partial cross sections of leading neutron production to the very periphery of the nucleus. The mechanism of the pion <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>π</mi></semantics></math></inline-formula> and axial vector meson <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>a</mi><mn>1</mn></msub></semantics></math></inline-formula> interference, which successfully explains the observed single-spin asymmetry in a polarized <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>p</mi><mi>p</mi><mo>→</mo><mi>n</mi><mi>X</mi></mrow></semantics></math></inline-formula>, is extended to the collisions of polarized protons with nuclei. When corrected for nuclear effects, it explains the observed single-spin azimuthal asymmetry of neutrons that is produced in inelastic events, which is where the nucleus violently breaks up. This single-spin asymmetry is found to be negative and nearly atomic mass number <i>A</i>-independent.
|