Accretion Disk Size and Updated Time-delay Measurements in the Gravitationally Lensed Quasar SDSS J165043.44+425149.3
We analyze variability in 15-season optical lightcurves from the doubly imaged lensed quasar SDSS J165043.44+425149.3 (SDSS1650), comprising five seasons of monitoring data from the Maidanak Observatory (277 nights in total, including the two seasons of data previously presented in Vuissoz et al.),...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
IOP Publishing
2024-01-01
|
Series: | The Astrophysical Journal |
Subjects: | |
Online Access: | https://doi.org/10.3847/1538-4357/ad3069 |
_version_ | 1797234703422455808 |
---|---|
author | A. B. Rivera C. W. Morgan S. M. Florence K. Kniezewski M. Millon F. Courbin S. E. Dahm F. J. Vrba T. M. Tilleman M. A. Cornachione I. M. Asfandiyarov S. A. Ehgamberdiev O. A. Burkhonov |
author_facet | A. B. Rivera C. W. Morgan S. M. Florence K. Kniezewski M. Millon F. Courbin S. E. Dahm F. J. Vrba T. M. Tilleman M. A. Cornachione I. M. Asfandiyarov S. A. Ehgamberdiev O. A. Burkhonov |
author_sort | A. B. Rivera |
collection | DOAJ |
description | We analyze variability in 15-season optical lightcurves from the doubly imaged lensed quasar SDSS J165043.44+425149.3 (SDSS1650), comprising five seasons of monitoring data from the Maidanak Observatory (277 nights in total, including the two seasons of data previously presented in Vuissoz et al.), five seasons of overlapping data from the Mercator telescope (269 nights), and 12 seasons of monitoring data from the US Naval Observatory, Flagstaff Station at lower cadence (80 nights). We update the 2007 time-delay measurement for SDSS1650 with these new data, finding a time delay of ${\rm{\Delta }}{t}_{\mathrm{AB}}=-{55.1}_{-3.7}^{+4.0}$ days, with image A leading image B. We analyze the microlensing variability in these lightcurves using a Bayesian Monte Carlo technique to yield measurements of the size of the accretion disk at λ _rest = 2420 Å, finding a half-light radius of log( r _1/2 /cm) = ${16.19}_{-0.58}^{+0.38}$ assuming a 60° inclination angle. This result is unchanged if we model 30% flux contamination from the broad-line region. We use the width of the Mg ii line in the existing Sloan Digital Sky Survey spectra to estimate the mass of this system’s supermassive black hole, finding M _BH = 2.47 × 10 ^9 M _⊙ . We confirm that the accretion disk size in this system, whose black hole mass is on the very high end of the M _BH scale, is fully consistent with the existing quasar accretion disk size–black hole mass relation. |
first_indexed | 2024-04-24T16:36:17Z |
format | Article |
id | doaj.art-ae7d8d01c2b745a38350ef5ff827c07f |
institution | Directory Open Access Journal |
issn | 1538-4357 |
language | English |
last_indexed | 2024-04-24T16:36:17Z |
publishDate | 2024-01-01 |
publisher | IOP Publishing |
record_format | Article |
series | The Astrophysical Journal |
spelling | doaj.art-ae7d8d01c2b745a38350ef5ff827c07f2024-03-29T15:26:28ZengIOP PublishingThe Astrophysical Journal1538-43572024-01-01964217310.3847/1538-4357/ad3069Accretion Disk Size and Updated Time-delay Measurements in the Gravitationally Lensed Quasar SDSS J165043.44+425149.3A. B. Rivera0https://orcid.org/0000-0001-8125-1669C. W. Morgan1https://orcid.org/0000-0003-2460-9999S. M. Florence2K. Kniezewski3M. Millon4https://orcid.org/0000-0001-7051-497XF. Courbin5https://orcid.org/0000-0003-0758-6510S. E. Dahm6https://orcid.org/0000-0002-2968-2418F. J. Vrba7T. M. Tilleman8M. A. Cornachione9https://orcid.org/0000-0003-1012-4771I. M. Asfandiyarov10S. A. Ehgamberdiev11O. A. Burkhonov12Department of Physics, United States Naval Academy , 572C Holloway Road, Annapolis, MD 21402, USA ; cmorgan@usna.edu; University of Pennsylvania Libraries , 3420 Walnut Street, Philadelphia, PA 19104, USADepartment of Physics, United States Naval Academy , 572C Holloway Road, Annapolis, MD 21402, USA ; cmorgan@usna.eduDepartment of Physics, United States Naval Academy , 572C Holloway Road, Annapolis, MD 21402, USA ; cmorgan@usna.eduDepartment of Physics, United States Naval Academy , 572C Holloway Road, Annapolis, MD 21402, USA ; cmorgan@usna.eduKavli Institute for Particle Astrophysics and Cosmology, Stanford University , Stanford, CA 94305, USAInstitute of Physics , Laboratory of Astrophysics, Ecole, Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, 1290 Versoix, SwitzerlandUnited States Naval Observatory , Flagstaff Station, 10391 West Naval Observatory Road, Flagstaff, AZ 86005, USAUnited States Naval Observatory , Flagstaff Station, 10391 West Naval Observatory Road, Flagstaff, AZ 86005, USAUnited States Naval Observatory , Flagstaff Station, 10391 West Naval Observatory Road, Flagstaff, AZ 86005, USAOregon Institute of Technology , 3201 Campus Drive, Klamath Falls, OR 97601, USAUlugh Beg Astronomical Institute of the Uzbek Academy of Sciences , Astronomicheskaya 33, 100052 Tashkent, UzbekistanUlugh Beg Astronomical Institute of the Uzbek Academy of Sciences , Astronomicheskaya 33, 100052 Tashkent, Uzbekistan; National University of Uzbekistan , Tashkent 100174, UzbekistanUlugh Beg Astronomical Institute of the Uzbek Academy of Sciences , Astronomicheskaya 33, 100052 Tashkent, Uzbekistan; National University of Uzbekistan , Tashkent 100174, UzbekistanWe analyze variability in 15-season optical lightcurves from the doubly imaged lensed quasar SDSS J165043.44+425149.3 (SDSS1650), comprising five seasons of monitoring data from the Maidanak Observatory (277 nights in total, including the two seasons of data previously presented in Vuissoz et al.), five seasons of overlapping data from the Mercator telescope (269 nights), and 12 seasons of monitoring data from the US Naval Observatory, Flagstaff Station at lower cadence (80 nights). We update the 2007 time-delay measurement for SDSS1650 with these new data, finding a time delay of ${\rm{\Delta }}{t}_{\mathrm{AB}}=-{55.1}_{-3.7}^{+4.0}$ days, with image A leading image B. We analyze the microlensing variability in these lightcurves using a Bayesian Monte Carlo technique to yield measurements of the size of the accretion disk at λ _rest = 2420 Å, finding a half-light radius of log( r _1/2 /cm) = ${16.19}_{-0.58}^{+0.38}$ assuming a 60° inclination angle. This result is unchanged if we model 30% flux contamination from the broad-line region. We use the width of the Mg ii line in the existing Sloan Digital Sky Survey spectra to estimate the mass of this system’s supermassive black hole, finding M _BH = 2.47 × 10 ^9 M _⊙ . We confirm that the accretion disk size in this system, whose black hole mass is on the very high end of the M _BH scale, is fully consistent with the existing quasar accretion disk size–black hole mass relation.https://doi.org/10.3847/1538-4357/ad3069Quasar microlensingQuasarsGravitational lensingGravitational microlensing |
spellingShingle | A. B. Rivera C. W. Morgan S. M. Florence K. Kniezewski M. Millon F. Courbin S. E. Dahm F. J. Vrba T. M. Tilleman M. A. Cornachione I. M. Asfandiyarov S. A. Ehgamberdiev O. A. Burkhonov Accretion Disk Size and Updated Time-delay Measurements in the Gravitationally Lensed Quasar SDSS J165043.44+425149.3 The Astrophysical Journal Quasar microlensing Quasars Gravitational lensing Gravitational microlensing |
title | Accretion Disk Size and Updated Time-delay Measurements in the Gravitationally Lensed Quasar SDSS J165043.44+425149.3 |
title_full | Accretion Disk Size and Updated Time-delay Measurements in the Gravitationally Lensed Quasar SDSS J165043.44+425149.3 |
title_fullStr | Accretion Disk Size and Updated Time-delay Measurements in the Gravitationally Lensed Quasar SDSS J165043.44+425149.3 |
title_full_unstemmed | Accretion Disk Size and Updated Time-delay Measurements in the Gravitationally Lensed Quasar SDSS J165043.44+425149.3 |
title_short | Accretion Disk Size and Updated Time-delay Measurements in the Gravitationally Lensed Quasar SDSS J165043.44+425149.3 |
title_sort | accretion disk size and updated time delay measurements in the gravitationally lensed quasar sdss j165043 44 425149 3 |
topic | Quasar microlensing Quasars Gravitational lensing Gravitational microlensing |
url | https://doi.org/10.3847/1538-4357/ad3069 |
work_keys_str_mv | AT abrivera accretiondisksizeandupdatedtimedelaymeasurementsinthegravitationallylensedquasarsdssj165043444251493 AT cwmorgan accretiondisksizeandupdatedtimedelaymeasurementsinthegravitationallylensedquasarsdssj165043444251493 AT smflorence accretiondisksizeandupdatedtimedelaymeasurementsinthegravitationallylensedquasarsdssj165043444251493 AT kkniezewski accretiondisksizeandupdatedtimedelaymeasurementsinthegravitationallylensedquasarsdssj165043444251493 AT mmillon accretiondisksizeandupdatedtimedelaymeasurementsinthegravitationallylensedquasarsdssj165043444251493 AT fcourbin accretiondisksizeandupdatedtimedelaymeasurementsinthegravitationallylensedquasarsdssj165043444251493 AT sedahm accretiondisksizeandupdatedtimedelaymeasurementsinthegravitationallylensedquasarsdssj165043444251493 AT fjvrba accretiondisksizeandupdatedtimedelaymeasurementsinthegravitationallylensedquasarsdssj165043444251493 AT tmtilleman accretiondisksizeandupdatedtimedelaymeasurementsinthegravitationallylensedquasarsdssj165043444251493 AT macornachione accretiondisksizeandupdatedtimedelaymeasurementsinthegravitationallylensedquasarsdssj165043444251493 AT imasfandiyarov accretiondisksizeandupdatedtimedelaymeasurementsinthegravitationallylensedquasarsdssj165043444251493 AT saehgamberdiev accretiondisksizeandupdatedtimedelaymeasurementsinthegravitationallylensedquasarsdssj165043444251493 AT oaburkhonov accretiondisksizeandupdatedtimedelaymeasurementsinthegravitationallylensedquasarsdssj165043444251493 |