Influencing the Crystalline Domains of Poly(vinylidenedifluoride) Composites Using Fluorinated Silica Nanoparticles as Drop-In Modifiers

Improvements to fluoropolymer processing techniques by way of utilizing nanoparticles as drop-in processing aids have pronounced effects on bulk composite properties. In this work, we prepared fluoroalkyl-silanized silica nanoparticles (F-SiNPs, ca. 200 nm) that were solvent-blended with polyvinylen...

Full description

Bibliographic Details
Main Authors: Nathan J. Weeks, Cole R. Phelps, Enrique T. Gazmin, Scott T. Iacono
Format: Article
Language:English
Published: MDPI AG 2022-12-01
Series:Molecules
Subjects:
Online Access:https://www.mdpi.com/1420-3049/27/23/8398
Description
Summary:Improvements to fluoropolymer processing techniques by way of utilizing nanoparticles as drop-in processing aids have pronounced effects on bulk composite properties. In this work, we prepared fluoroalkyl-silanized silica nanoparticles (F-SiNPs, ca. 200 nm) that were solvent-blended with polyvinylenedifluoride (PVDF) in order to prepare composites with varying weight fractions. We demonstrated that the ability to functionalize SiNPs with long fluoroalkylchains that induced co-crystallization with the PVDF matrix, resulting in uniform particle dispersion and improved interlaminate adhesion. This was quantitatively investigated using calorimetry and thermogravimetric analysis, which showed a decrease in the bulk crystallinity of the virgin PVDF from 37% to 10% with minimal 10 wt % F-SiNP loading, rendering a nearly amorphous PVDF. Additional discussions in this work include the effects of various bare and fluoroalkyl-functionalized SiNP loadings on the amorphous and crystalline domains of the PVDF matrix, as well as thermal decomposition.
ISSN:1420-3049