Influence of Crack Geometry on Dynamic Damage of Cracked Rock: Crack Number and Filling Material

The dynamic damage of cracked rock threatens the stability of rock structures in rock engineering applications such as underground excavation, mineral exploration and rock slopes. In this study, the dynamic damage of cracked rock with different spatial geometry was investigated in an experimental me...

Full description

Bibliographic Details
Main Authors: Feili Wang, Shuhong Wang, Zhanguo Xiu
Format: Article
Language:English
Published: MDPI AG 2020-12-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/11/1/250
Description
Summary:The dynamic damage of cracked rock threatens the stability of rock structures in rock engineering applications such as underground excavation, mineral exploration and rock slopes. In this study, the dynamic damage of cracked rock with different spatial geometry was investigated in an experimental method. Approximately 54 sandstone specimens with different numbers of joints and different filling materials were tested using the split Hopkinson pressure bar (SHPB) apparatus. The energy absorption in this process was analyzed, and the damage variable was obtained. The experimental results revealed that the dynamic damage of cracked rock is obviously influenced by the number of cracks; the larger the number, the higher the energy absorption and the bigger the dynamic damage variable. Moreover, it was observed from the dynamic compressive experiments that the energy absorption and the dynamic variable decreased with the strength and cohesion of the filling material, indicating that the filling material of crack has considerate influence on the dynamic damage of cracked rock.
ISSN:2076-3417