Interrelación entre los métodos de Rayleigh-Schrodinger, Brillouin-Wigner y el de transformaciones canónicas

Time-independent perturbation theory is developed for an arbitrary operator [Physical Formula] which can be expanded in power series of the perturbation parameter [Physical Formula]. A unified formulation allows the establishment of a formal interrelation between the methods of Rayleigh-Schrodinger,...

Full description

Bibliographic Details
Main Author: D. Campos
Format: Article
Language:English
Published: Universidad Nacional de Colombia 1993-07-01
Series:Momento
Subjects:
Online Access:https://revistas.unal.edu.co/index.php/momento/article/view/35240
_version_ 1818040477505552384
author D. Campos
author_facet D. Campos
author_sort D. Campos
collection DOAJ
description Time-independent perturbation theory is developed for an arbitrary operator [Physical Formula] which can be expanded in power series of the perturbation parameter [Physical Formula]. A unified formulation allows the establishment of a formal interrelation between the methods of Rayleigh-Schrodinger, of Brillouin-Wigner and of canonical transformations. A new method, here called Born approximation, is proposed.
first_indexed 2024-12-10T08:15:09Z
format Article
id doaj.art-aee02187737143c3a063d356944c2ab2
institution Directory Open Access Journal
issn 0121-4470
2500-8013
language English
last_indexed 2024-12-10T08:15:09Z
publishDate 1993-07-01
publisher Universidad Nacional de Colombia
record_format Article
series Momento
spelling doaj.art-aee02187737143c3a063d356944c2ab22022-12-22T01:56:29ZengUniversidad Nacional de ColombiaMomento0121-44702500-80131993-07-010952131083Interrelación entre los métodos de Rayleigh-Schrodinger, Brillouin-Wigner y el de transformaciones canónicasD. Campos0Universidad Nacional de ColombiaTime-independent perturbation theory is developed for an arbitrary operator [Physical Formula] which can be expanded in power series of the perturbation parameter [Physical Formula]. A unified formulation allows the establishment of a formal interrelation between the methods of Rayleigh-Schrodinger, of Brillouin-Wigner and of canonical transformations. A new method, here called Born approximation, is proposed.https://revistas.unal.edu.co/index.php/momento/article/view/35240Teoría de perturbacionesmétodo de Rayleigh-Schrodingermétodo de Brillouin-Wigner
spellingShingle D. Campos
Interrelación entre los métodos de Rayleigh-Schrodinger, Brillouin-Wigner y el de transformaciones canónicas
Momento
Teoría de perturbaciones
método de Rayleigh-Schrodinger
método de Brillouin-Wigner
title Interrelación entre los métodos de Rayleigh-Schrodinger, Brillouin-Wigner y el de transformaciones canónicas
title_full Interrelación entre los métodos de Rayleigh-Schrodinger, Brillouin-Wigner y el de transformaciones canónicas
title_fullStr Interrelación entre los métodos de Rayleigh-Schrodinger, Brillouin-Wigner y el de transformaciones canónicas
title_full_unstemmed Interrelación entre los métodos de Rayleigh-Schrodinger, Brillouin-Wigner y el de transformaciones canónicas
title_short Interrelación entre los métodos de Rayleigh-Schrodinger, Brillouin-Wigner y el de transformaciones canónicas
title_sort interrelacion entre los metodos de rayleigh schrodinger brillouin wigner y el de transformaciones canonicas
topic Teoría de perturbaciones
método de Rayleigh-Schrodinger
método de Brillouin-Wigner
url https://revistas.unal.edu.co/index.php/momento/article/view/35240
work_keys_str_mv AT dcampos interrelacionentrelosmetodosderayleighschrodingerbrillouinwigneryeldetransformacionescanonicas