Preparation of Polybenzimidazole-Based Membranes and Their Potential Applications in the Fuel Cell System

Various polybenzimidazole (PBI)-based ion-exchange films were prepared and thoroughly characterized by Fourier transform infrared (FT-IR) spectroscopy, proton conductivity, and water uptake for possible use as fuel cell membranes. Upon the increase in the flexibility of the PBI-based polymer films (...

Full description

Bibliographic Details
Main Authors: Kyungho Hwang, Jun-Hyun Kim, Sung-Yul Kim, Hongsik Byun
Format: Article
Language:English
Published: MDPI AG 2014-03-01
Series:Energies
Subjects:
Online Access:http://www.mdpi.com/1996-1073/7/3/1721
Description
Summary:Various polybenzimidazole (PBI)-based ion-exchange films were prepared and thoroughly characterized by Fourier transform infrared (FT-IR) spectroscopy, proton conductivity, and water uptake for possible use as fuel cell membranes. Upon the increase in the flexibility of the PBI-based polymer films (e.g., poly(oxyphenylene benzimidazole) (OPBI) and sulfonated OPBI (s-OPBI)), the membranes exhibited slightly improved proton conductivity, but significantly increased dimensional changes. To reduce the dimensional changes (i.e., increase the stability), the cross-linking of the polymer films (e.g., cross-linked OPBI (c-OPBI) and sulfonated c-OPBI (sc-OPBI)) was accomplished using phosphoric acid. Interestingly, the sc-OPBI membrane possessed a greatly increased proton conductivity (0.082 S/cm), which is comparable to that of the commercially available Nafion membrane (0.09 S/cm), while still maintaining slightly better properties regarding the dimensional change and water uptake than those of the Nafion membrane.
ISSN:1996-1073