Potential Applications of Nanoparticles in Improving the Outcome of Lung Cancer Treatment

Lung cancer is managed using conventional therapies, including chemotherapy, radiation therapy, or a combination of both. Each of these therapies has its own limitations, such as the indiscriminate killing of normal as well as cancer cells, the solubility of the chemotherapeutic drugs, rapid clearan...

Full description

Bibliographic Details
Main Authors: Agnishwar Girigoswami, Koyeli Girigoswami
Format: Article
Language:English
Published: MDPI AG 2023-06-01
Series:Genes
Subjects:
Online Access:https://www.mdpi.com/2073-4425/14/7/1370
Description
Summary:Lung cancer is managed using conventional therapies, including chemotherapy, radiation therapy, or a combination of both. Each of these therapies has its own limitations, such as the indiscriminate killing of normal as well as cancer cells, the solubility of the chemotherapeutic drugs, rapid clearance of the drugs from circulation before reaching the tumor site, the resistance of cancer cells to radiation, and over-sensitization of normal cells to radiation. Other treatment modalities include gene therapy, immunological checkpoint inhibitors, drug repurposing, and in situ cryo-immune engineering (ICIE) strategy. Nanotechnology has come to the rescue to overcome many shortfalls of conventional therapies. Some of the nano-formulated chemotherapeutic drugs, as well as nanoparticles and nanostructures with surface modifications, have been used for effective cancer cell killing and radio sensitization, respectively. Nano-enabled drug delivery systems act as cargo to deliver the sensitizer molecules specifically to the tumor cells, thereby enabling the radiation therapy to be more effective. In this review, we have discussed the different conventional chemotherapies and radiation therapies used for inhibiting lung cancer. We have also discussed the improvement in chemotherapy and radiation sensitization using nanoparticles.
ISSN:2073-4425