Radial minimizers of a Ginzburg-Landau functional
We consider the functional $$ E_varepsilon(u,G) =frac 1pint_G|abla u|^p +frac{1}{4varepsilon^p}int_G(1-|u|^2)^2 $$ with $p>2$ and $d>0$, on the class of functions $W={u(x)=f(r)e^{idheta} in W^{1,p}(B,C); f(1)=1,f(r)geq 0}$. The location of the zeroes of the minimizer and its convergence as $va...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Texas State University
1999-09-01
|
Series: | Electronic Journal of Differential Equations |
Subjects: | |
Online Access: | http://ejde.math.txstate.edu/Volumes/1999/30/abstr.html |
_version_ | 1811299048657780736 |
---|---|
author | Yutian Lei Zhuoqun Wu Hongjun Yuan |
author_facet | Yutian Lei Zhuoqun Wu Hongjun Yuan |
author_sort | Yutian Lei |
collection | DOAJ |
description | We consider the functional $$ E_varepsilon(u,G) =frac 1pint_G|abla u|^p +frac{1}{4varepsilon^p}int_G(1-|u|^2)^2 $$ with $p>2$ and $d>0$, on the class of functions $W={u(x)=f(r)e^{idheta} in W^{1,p}(B,C); f(1)=1,f(r)geq 0}$. The location of the zeroes of the minimizer and its convergence as $varepsilon$ approaches zero are established. |
first_indexed | 2024-04-13T06:29:25Z |
format | Article |
id | doaj.art-aef28b42d2334db2ab7df6ba4293b79e |
institution | Directory Open Access Journal |
issn | 1072-6691 |
language | English |
last_indexed | 2024-04-13T06:29:25Z |
publishDate | 1999-09-01 |
publisher | Texas State University |
record_format | Article |
series | Electronic Journal of Differential Equations |
spelling | doaj.art-aef28b42d2334db2ab7df6ba4293b79e2022-12-22T02:58:14ZengTexas State UniversityElectronic Journal of Differential Equations1072-66911999-09-01199930121Radial minimizers of a Ginzburg-Landau functionalYutian LeiZhuoqun WuHongjun YuanWe consider the functional $$ E_varepsilon(u,G) =frac 1pint_G|abla u|^p +frac{1}{4varepsilon^p}int_G(1-|u|^2)^2 $$ with $p>2$ and $d>0$, on the class of functions $W={u(x)=f(r)e^{idheta} in W^{1,p}(B,C); f(1)=1,f(r)geq 0}$. The location of the zeroes of the minimizer and its convergence as $varepsilon$ approaches zero are established.http://ejde.math.txstate.edu/Volumes/1999/30/abstr.htmlGinzburg-Landau functionalradial functionalzeros of a minimizer. |
spellingShingle | Yutian Lei Zhuoqun Wu Hongjun Yuan Radial minimizers of a Ginzburg-Landau functional Electronic Journal of Differential Equations Ginzburg-Landau functional radial functional zeros of a minimizer. |
title | Radial minimizers of a Ginzburg-Landau functional |
title_full | Radial minimizers of a Ginzburg-Landau functional |
title_fullStr | Radial minimizers of a Ginzburg-Landau functional |
title_full_unstemmed | Radial minimizers of a Ginzburg-Landau functional |
title_short | Radial minimizers of a Ginzburg-Landau functional |
title_sort | radial minimizers of a ginzburg landau functional |
topic | Ginzburg-Landau functional radial functional zeros of a minimizer. |
url | http://ejde.math.txstate.edu/Volumes/1999/30/abstr.html |
work_keys_str_mv | AT yutianlei radialminimizersofaginzburglandaufunctional AT zhuoqunwu radialminimizersofaginzburglandaufunctional AT hongjunyuan radialminimizersofaginzburglandaufunctional |