Radial minimizers of a Ginzburg-Landau functional

We consider the functional $$ E_varepsilon(u,G) =frac 1pint_G|abla u|^p +frac{1}{4varepsilon^p}int_G(1-|u|^2)^2 $$ with $p>2$ and $d>0$, on the class of functions $W={u(x)=f(r)e^{idheta} in W^{1,p}(B,C); f(1)=1,f(r)geq 0}$. The location of the zeroes of the minimizer and its convergence as $va...

Full description

Bibliographic Details
Main Authors: Yutian Lei, Zhuoqun Wu, Hongjun Yuan
Format: Article
Language:English
Published: Texas State University 1999-09-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/1999/30/abstr.html
_version_ 1811299048657780736
author Yutian Lei
Zhuoqun Wu
Hongjun Yuan
author_facet Yutian Lei
Zhuoqun Wu
Hongjun Yuan
author_sort Yutian Lei
collection DOAJ
description We consider the functional $$ E_varepsilon(u,G) =frac 1pint_G|abla u|^p +frac{1}{4varepsilon^p}int_G(1-|u|^2)^2 $$ with $p>2$ and $d>0$, on the class of functions $W={u(x)=f(r)e^{idheta} in W^{1,p}(B,C); f(1)=1,f(r)geq 0}$. The location of the zeroes of the minimizer and its convergence as $varepsilon$ approaches zero are established.
first_indexed 2024-04-13T06:29:25Z
format Article
id doaj.art-aef28b42d2334db2ab7df6ba4293b79e
institution Directory Open Access Journal
issn 1072-6691
language English
last_indexed 2024-04-13T06:29:25Z
publishDate 1999-09-01
publisher Texas State University
record_format Article
series Electronic Journal of Differential Equations
spelling doaj.art-aef28b42d2334db2ab7df6ba4293b79e2022-12-22T02:58:14ZengTexas State UniversityElectronic Journal of Differential Equations1072-66911999-09-01199930121Radial minimizers of a Ginzburg-Landau functionalYutian LeiZhuoqun WuHongjun YuanWe consider the functional $$ E_varepsilon(u,G) =frac 1pint_G|abla u|^p +frac{1}{4varepsilon^p}int_G(1-|u|^2)^2 $$ with $p>2$ and $d>0$, on the class of functions $W={u(x)=f(r)e^{idheta} in W^{1,p}(B,C); f(1)=1,f(r)geq 0}$. The location of the zeroes of the minimizer and its convergence as $varepsilon$ approaches zero are established.http://ejde.math.txstate.edu/Volumes/1999/30/abstr.htmlGinzburg-Landau functionalradial functionalzeros of a minimizer.
spellingShingle Yutian Lei
Zhuoqun Wu
Hongjun Yuan
Radial minimizers of a Ginzburg-Landau functional
Electronic Journal of Differential Equations
Ginzburg-Landau functional
radial functional
zeros of a minimizer.
title Radial minimizers of a Ginzburg-Landau functional
title_full Radial minimizers of a Ginzburg-Landau functional
title_fullStr Radial minimizers of a Ginzburg-Landau functional
title_full_unstemmed Radial minimizers of a Ginzburg-Landau functional
title_short Radial minimizers of a Ginzburg-Landau functional
title_sort radial minimizers of a ginzburg landau functional
topic Ginzburg-Landau functional
radial functional
zeros of a minimizer.
url http://ejde.math.txstate.edu/Volumes/1999/30/abstr.html
work_keys_str_mv AT yutianlei radialminimizersofaginzburglandaufunctional
AT zhuoqunwu radialminimizersofaginzburglandaufunctional
AT hongjunyuan radialminimizersofaginzburglandaufunctional