Summary: | The article considers the problem of development of power loss minimization system in asynchronous motors with asymmetric voltage supply. The subject of the research is a continuous run of asynchronous motor based on artificial adjusting of characteristics in the area of nominal slipping with better energy indicators than at a operational segment of natural mechanical characteristics. The artificial control characteristic of a drive corresponding to power loss minimization mode is calculated in advance using the solution of extreme control concern. The paper demonstrates that under conditions of electric drive supplied by an asymmetric voltage source the one should apply a phase-by-phase control. The feedback action logic is as follows: reduction of the output voltage of thyristor converter and motor currents as a reducing of the load on the asynchronous motor shaft occurs. As a result, there appears the possibility to maintain the load angle equality of all the phases of asynchronous motor to an optimal value. This allows to solve the problem of power loss minimization in an asynchronous motor due to the load angle equality to the optimal value, and the problem of symmetrization due to the load angle equality in motor phases. The most significant result of the research is the developed automated scheme of symmetrization which is not only efficient with power source voltage asymmetry, but also with asymmetry of asynchronous motor parameters themselves. The proposed functional scheme of microprocessor control and the algorithm of control increase the possibilities of automated loss minimization system.
|