Using Super-Resolution for Enhancing Visual Perception and Segmentation Performance in Veterinary Cytology

The primary objective of this research was to enhance the quality of semantic segmentation in cytology images by incorporating super-resolution (SR) architectures. An additional contribution was the development of a novel dataset aimed at improving imaging quality in the presence of inaccurate focus...

Full description

Bibliographic Details
Main Authors: Jakub Caputa, Maciej Wielgosz, Daria Łukasik, Paweł Russek, Jakub Grzeszczyk, Michał Karwatowski, Szymon Mazurek, Rafał Frączek, Anna Śmiech, Ernest Jamro, Sebastian Koryciak, Agnieszka Dąbrowska-Boruch, Marcin Pietroń, Kazimierz Wiatr
Format: Article
Language:English
Published: MDPI AG 2024-02-01
Series:Life
Subjects:
Online Access:https://www.mdpi.com/2075-1729/14/3/321
_version_ 1797240293028790272
author Jakub Caputa
Maciej Wielgosz
Daria Łukasik
Paweł Russek
Jakub Grzeszczyk
Michał Karwatowski
Szymon Mazurek
Rafał Frączek
Anna Śmiech
Ernest Jamro
Sebastian Koryciak
Agnieszka Dąbrowska-Boruch
Marcin Pietroń
Kazimierz Wiatr
author_facet Jakub Caputa
Maciej Wielgosz
Daria Łukasik
Paweł Russek
Jakub Grzeszczyk
Michał Karwatowski
Szymon Mazurek
Rafał Frączek
Anna Śmiech
Ernest Jamro
Sebastian Koryciak
Agnieszka Dąbrowska-Boruch
Marcin Pietroń
Kazimierz Wiatr
author_sort Jakub Caputa
collection DOAJ
description The primary objective of this research was to enhance the quality of semantic segmentation in cytology images by incorporating super-resolution (SR) architectures. An additional contribution was the development of a novel dataset aimed at improving imaging quality in the presence of inaccurate focus. Our experimental results demonstrate that the integration of SR techniques into the segmentation pipeline can lead to a significant improvement of up to 25% in the mean average precision (mAP) metric. These findings suggest that leveraging SR architectures holds great promise for advancing the state-of-the-art in cytology image analysis.
first_indexed 2024-04-24T18:05:07Z
format Article
id doaj.art-aefea36f497b4297bc0579db5d4342e1
institution Directory Open Access Journal
issn 2075-1729
language English
last_indexed 2024-04-24T18:05:07Z
publishDate 2024-02-01
publisher MDPI AG
record_format Article
series Life
spelling doaj.art-aefea36f497b4297bc0579db5d4342e12024-03-27T13:51:08ZengMDPI AGLife2075-17292024-02-0114332110.3390/life14030321Using Super-Resolution for Enhancing Visual Perception and Segmentation Performance in Veterinary CytologyJakub Caputa0Maciej Wielgosz1Daria Łukasik2Paweł Russek3Jakub Grzeszczyk4Michał Karwatowski5Szymon Mazurek6Rafał Frączek7Anna Śmiech8Ernest Jamro9Sebastian Koryciak10Agnieszka Dąbrowska-Boruch11Marcin Pietroń12Kazimierz Wiatr13ACC Cyfronet AGH, Nawojki 11, 30-950 Kraków, PolandACC Cyfronet AGH, Nawojki 11, 30-950 Kraków, PolandACC Cyfronet AGH, Nawojki 11, 30-950 Kraków, PolandACC Cyfronet AGH, Nawojki 11, 30-950 Kraków, PolandACC Cyfronet AGH, Nawojki 11, 30-950 Kraków, PolandACC Cyfronet AGH, Nawojki 11, 30-950 Kraków, PolandACC Cyfronet AGH, Nawojki 11, 30-950 Kraków, PolandACC Cyfronet AGH, Nawojki 11, 30-950 Kraków, PolandUniversity of Life Sciences, al. Akademicka 13, 20-950 Lublin, PolandACC Cyfronet AGH, Nawojki 11, 30-950 Kraków, PolandACC Cyfronet AGH, Nawojki 11, 30-950 Kraków, PolandACC Cyfronet AGH, Nawojki 11, 30-950 Kraków, PolandACC Cyfronet AGH, Nawojki 11, 30-950 Kraków, PolandACC Cyfronet AGH, Nawojki 11, 30-950 Kraków, PolandThe primary objective of this research was to enhance the quality of semantic segmentation in cytology images by incorporating super-resolution (SR) architectures. An additional contribution was the development of a novel dataset aimed at improving imaging quality in the presence of inaccurate focus. Our experimental results demonstrate that the integration of SR techniques into the segmentation pipeline can lead to a significant improvement of up to 25% in the mean average precision (mAP) metric. These findings suggest that leveraging SR architectures holds great promise for advancing the state-of-the-art in cytology image analysis.https://www.mdpi.com/2075-1729/14/3/321super image resolutioncomputer visiondeep learningcytologymedical imagingsemantic segmentation
spellingShingle Jakub Caputa
Maciej Wielgosz
Daria Łukasik
Paweł Russek
Jakub Grzeszczyk
Michał Karwatowski
Szymon Mazurek
Rafał Frączek
Anna Śmiech
Ernest Jamro
Sebastian Koryciak
Agnieszka Dąbrowska-Boruch
Marcin Pietroń
Kazimierz Wiatr
Using Super-Resolution for Enhancing Visual Perception and Segmentation Performance in Veterinary Cytology
Life
super image resolution
computer vision
deep learning
cytology
medical imaging
semantic segmentation
title Using Super-Resolution for Enhancing Visual Perception and Segmentation Performance in Veterinary Cytology
title_full Using Super-Resolution for Enhancing Visual Perception and Segmentation Performance in Veterinary Cytology
title_fullStr Using Super-Resolution for Enhancing Visual Perception and Segmentation Performance in Veterinary Cytology
title_full_unstemmed Using Super-Resolution for Enhancing Visual Perception and Segmentation Performance in Veterinary Cytology
title_short Using Super-Resolution for Enhancing Visual Perception and Segmentation Performance in Veterinary Cytology
title_sort using super resolution for enhancing visual perception and segmentation performance in veterinary cytology
topic super image resolution
computer vision
deep learning
cytology
medical imaging
semantic segmentation
url https://www.mdpi.com/2075-1729/14/3/321
work_keys_str_mv AT jakubcaputa usingsuperresolutionforenhancingvisualperceptionandsegmentationperformanceinveterinarycytology
AT maciejwielgosz usingsuperresolutionforenhancingvisualperceptionandsegmentationperformanceinveterinarycytology
AT dariałukasik usingsuperresolutionforenhancingvisualperceptionandsegmentationperformanceinveterinarycytology
AT pawełrussek usingsuperresolutionforenhancingvisualperceptionandsegmentationperformanceinveterinarycytology
AT jakubgrzeszczyk usingsuperresolutionforenhancingvisualperceptionandsegmentationperformanceinveterinarycytology
AT michałkarwatowski usingsuperresolutionforenhancingvisualperceptionandsegmentationperformanceinveterinarycytology
AT szymonmazurek usingsuperresolutionforenhancingvisualperceptionandsegmentationperformanceinveterinarycytology
AT rafałfraczek usingsuperresolutionforenhancingvisualperceptionandsegmentationperformanceinveterinarycytology
AT annasmiech usingsuperresolutionforenhancingvisualperceptionandsegmentationperformanceinveterinarycytology
AT ernestjamro usingsuperresolutionforenhancingvisualperceptionandsegmentationperformanceinveterinarycytology
AT sebastiankoryciak usingsuperresolutionforenhancingvisualperceptionandsegmentationperformanceinveterinarycytology
AT agnieszkadabrowskaboruch usingsuperresolutionforenhancingvisualperceptionandsegmentationperformanceinveterinarycytology
AT marcinpietron usingsuperresolutionforenhancingvisualperceptionandsegmentationperformanceinveterinarycytology
AT kazimierzwiatr usingsuperresolutionforenhancingvisualperceptionandsegmentationperformanceinveterinarycytology