Effect of Water Stress and Shading on Lime Yield and Quality
The aim of this study was to test the combined effect of water stress and cropping system on yield and fruit quality in Bearss lime trees. For this purpose, two irrigation treatments were applied during stage II of fruit growth: control (well irrigated, automatically managed by soil water content se...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2023-01-01
|
Series: | Plants |
Subjects: | |
Online Access: | https://www.mdpi.com/2223-7747/12/3/503 |
_version_ | 1797623486591533056 |
---|---|
author | Ana Belén Mira-García Wenceslao Conejero Juan Vera María Carmen Ruiz-Sánchez |
author_facet | Ana Belén Mira-García Wenceslao Conejero Juan Vera María Carmen Ruiz-Sánchez |
author_sort | Ana Belén Mira-García |
collection | DOAJ |
description | The aim of this study was to test the combined effect of water stress and cropping system on yield and fruit quality in Bearss lime trees. For this purpose, two irrigation treatments were applied during stage II of fruit growth: control (well irrigated, automatically managed by soil water content sensors) and stress (non-irrigated), both under open-field and shaded conditions. Soil water status was assessed by determining soil water content and plant water status by measuring stem water potential (Ψ<sub>stem</sub>), stomatal conductance (g<sub>s</sub>), and net photosynthesis (P<sub>n</sub>). Yield parameters (kg and the number of fruits per tree and fresh mass per fruit) and fruit quality were assessed on two harvest dates. In addition, on the second harvest date, the content of metabolites and nutrients in the lime juice was analyzed. The results showed that soil water deficit induced 35% lower g<sub>s</sub> values in open-field than in shaded conditions. The highest kg and the number of fruits per tree were observed in the shaded system, especially on the first harvest date. The lowest yield was observed in stressed trees grown without netting. Slightly higher fresh mass and equatorial diameter were observed in shaded fruits than in open-field fruit. Soil water deficit increased fruit total soluble solids and decreased juice content, especially in open-field trees. Shaded conditions made the lime trees more resilient to soil water deficit, which led to higher yields and better external fruit quality traits. In addition, fruit precocity was significantly higher in the shaded system. |
first_indexed | 2024-03-11T09:29:40Z |
format | Article |
id | doaj.art-af007e2d41904902ad1823865eb5c16b |
institution | Directory Open Access Journal |
issn | 2223-7747 |
language | English |
last_indexed | 2024-03-11T09:29:40Z |
publishDate | 2023-01-01 |
publisher | MDPI AG |
record_format | Article |
series | Plants |
spelling | doaj.art-af007e2d41904902ad1823865eb5c16b2023-11-16T17:43:18ZengMDPI AGPlants2223-77472023-01-0112350310.3390/plants12030503Effect of Water Stress and Shading on Lime Yield and QualityAna Belén Mira-García0Wenceslao Conejero1Juan Vera2María Carmen Ruiz-Sánchez3Irrigation Department, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, SpainIrrigation Department, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, SpainIrrigation Department, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, SpainIrrigation Department, CEBAS-CSIC, Campus de Espinardo, 30100 Murcia, SpainThe aim of this study was to test the combined effect of water stress and cropping system on yield and fruit quality in Bearss lime trees. For this purpose, two irrigation treatments were applied during stage II of fruit growth: control (well irrigated, automatically managed by soil water content sensors) and stress (non-irrigated), both under open-field and shaded conditions. Soil water status was assessed by determining soil water content and plant water status by measuring stem water potential (Ψ<sub>stem</sub>), stomatal conductance (g<sub>s</sub>), and net photosynthesis (P<sub>n</sub>). Yield parameters (kg and the number of fruits per tree and fresh mass per fruit) and fruit quality were assessed on two harvest dates. In addition, on the second harvest date, the content of metabolites and nutrients in the lime juice was analyzed. The results showed that soil water deficit induced 35% lower g<sub>s</sub> values in open-field than in shaded conditions. The highest kg and the number of fruits per tree were observed in the shaded system, especially on the first harvest date. The lowest yield was observed in stressed trees grown without netting. Slightly higher fresh mass and equatorial diameter were observed in shaded fruits than in open-field fruit. Soil water deficit increased fruit total soluble solids and decreased juice content, especially in open-field trees. Shaded conditions made the lime trees more resilient to soil water deficit, which led to higher yields and better external fruit quality traits. In addition, fruit precocity was significantly higher in the shaded system.https://www.mdpi.com/2223-7747/12/3/503cropping systemlime juicemetabolitesnutrientsshadingsoil water deficit |
spellingShingle | Ana Belén Mira-García Wenceslao Conejero Juan Vera María Carmen Ruiz-Sánchez Effect of Water Stress and Shading on Lime Yield and Quality Plants cropping system lime juice metabolites nutrients shading soil water deficit |
title | Effect of Water Stress and Shading on Lime Yield and Quality |
title_full | Effect of Water Stress and Shading on Lime Yield and Quality |
title_fullStr | Effect of Water Stress and Shading on Lime Yield and Quality |
title_full_unstemmed | Effect of Water Stress and Shading on Lime Yield and Quality |
title_short | Effect of Water Stress and Shading on Lime Yield and Quality |
title_sort | effect of water stress and shading on lime yield and quality |
topic | cropping system lime juice metabolites nutrients shading soil water deficit |
url | https://www.mdpi.com/2223-7747/12/3/503 |
work_keys_str_mv | AT anabelenmiragarcia effectofwaterstressandshadingonlimeyieldandquality AT wenceslaoconejero effectofwaterstressandshadingonlimeyieldandquality AT juanvera effectofwaterstressandshadingonlimeyieldandquality AT mariacarmenruizsanchez effectofwaterstressandshadingonlimeyieldandquality |