The implementation of dust mineralogy in COSMO5.05-MUSCAT

<p>Mineral dust aerosols are composed of a complex assemblage of various minerals depending on the region in which they originated. Given the different mineral composition of desert dust aerosols, different physicochemical properties and therefore varying climate effects are expected.</p>...

Full description

Bibliographic Details
Main Authors: S. Gómez Maqueo Anaya, D. Althausen, M. Faust, H. Baars, B. Heinold, J. Hofer, I. Tegen, A. Ansmann, R. Engelmann, A. Skupin, B. Heese, K. Schepanski
Format: Article
Language:English
Published: Copernicus Publications 2024-02-01
Series:Geoscientific Model Development
Online Access:https://gmd.copernicus.org/articles/17/1271/2024/gmd-17-1271-2024.pdf
_version_ 1797310801462165504
author S. Gómez Maqueo Anaya
D. Althausen
M. Faust
H. Baars
B. Heinold
J. Hofer
I. Tegen
A. Ansmann
R. Engelmann
A. Skupin
B. Heese
K. Schepanski
author_facet S. Gómez Maqueo Anaya
D. Althausen
M. Faust
H. Baars
B. Heinold
J. Hofer
I. Tegen
A. Ansmann
R. Engelmann
A. Skupin
B. Heese
K. Schepanski
author_sort S. Gómez Maqueo Anaya
collection DOAJ
description <p>Mineral dust aerosols are composed of a complex assemblage of various minerals depending on the region in which they originated. Given the different mineral composition of desert dust aerosols, different physicochemical properties and therefore varying climate effects are expected.</p> <p>Despite the known regional variations in mineral composition, chemical transport models typically assume that mineral dust aerosols have uniform composition. This study adds, for the first time, mineralogical information to the mineral dust emission scheme used in the chemical transport model COSMO–MUSCAT. We provide a detailed description of the implementation of the mineralogical database, GMINER (<span class="cit" id="xref_altparen.1"><a href="#bib1.bibx52">Nickovic et al.</a>, <a href="#bib1.bibx52">2012</a></span>), together with a specific set of physical parameterizations in the model's mineral dust emission module, which led to a general improvement of the model performance when comparing the simulated mineral dust aerosols with measurements over the Sahara region for January–February 2022.</p> <p>The simulated mineral dust aerosol vertical distribution is tested by a comparison with aerosol lidar measurements from the lidar system <span class="inline-formula">Polly<sup>XT</sup></span>, located at Cape Verde. For a lofted mineral dust aerosol layer on 2 February at 05:00 UTC the lidar retrievals yield a dust mass concentration peak of 156 <span class="inline-formula">µg m<sup>−3</sup></span>, while the model calculates the mineral dust peak at 136 <span class="inline-formula">µg m<sup>−3</sup></span>. The results highlight the possibility of using the model with resolved mineral dust composition for interpretation of the lidar measurements since a higher absorption in the UV–Vis wavelengths is correlated with particles having a higher hematite content. Additionally, the comparison with in situ mineralogical measurements of dust aerosol particles shows that more of them are needed for model evaluation.</p>
first_indexed 2024-03-08T01:48:18Z
format Article
id doaj.art-af06a90ecfa64c6c9d3af13cddb0e032
institution Directory Open Access Journal
issn 1991-959X
1991-9603
language English
last_indexed 2024-03-08T01:48:18Z
publishDate 2024-02-01
publisher Copernicus Publications
record_format Article
series Geoscientific Model Development
spelling doaj.art-af06a90ecfa64c6c9d3af13cddb0e0322024-02-14T12:43:23ZengCopernicus PublicationsGeoscientific Model Development1991-959X1991-96032024-02-01171271129510.5194/gmd-17-1271-2024The implementation of dust mineralogy in COSMO5.05-MUSCATS. Gómez Maqueo Anaya0D. Althausen1M. Faust2H. Baars3B. Heinold4J. Hofer5I. Tegen6A. Ansmann7R. Engelmann8A. Skupin9B. Heese10K. Schepanski11Leibniz Institute for Tropospheric Research (TROPOS), Leipzig, GermanyLeibniz Institute for Tropospheric Research (TROPOS), Leipzig, GermanyLeibniz Institute for Tropospheric Research (TROPOS), Leipzig, GermanyLeibniz Institute for Tropospheric Research (TROPOS), Leipzig, GermanyLeibniz Institute for Tropospheric Research (TROPOS), Leipzig, GermanyLeibniz Institute for Tropospheric Research (TROPOS), Leipzig, GermanyLeibniz Institute for Tropospheric Research (TROPOS), Leipzig, GermanyLeibniz Institute for Tropospheric Research (TROPOS), Leipzig, GermanyLeibniz Institute for Tropospheric Research (TROPOS), Leipzig, GermanyLeibniz Institute for Tropospheric Research (TROPOS), Leipzig, GermanyLeibniz Institute for Tropospheric Research (TROPOS), Leipzig, GermanyInstitute of Meteorology, Department of Earth Sciences, Free University of Berlin, Berlin, Germany<p>Mineral dust aerosols are composed of a complex assemblage of various minerals depending on the region in which they originated. Given the different mineral composition of desert dust aerosols, different physicochemical properties and therefore varying climate effects are expected.</p> <p>Despite the known regional variations in mineral composition, chemical transport models typically assume that mineral dust aerosols have uniform composition. This study adds, for the first time, mineralogical information to the mineral dust emission scheme used in the chemical transport model COSMO–MUSCAT. We provide a detailed description of the implementation of the mineralogical database, GMINER (<span class="cit" id="xref_altparen.1"><a href="#bib1.bibx52">Nickovic et al.</a>, <a href="#bib1.bibx52">2012</a></span>), together with a specific set of physical parameterizations in the model's mineral dust emission module, which led to a general improvement of the model performance when comparing the simulated mineral dust aerosols with measurements over the Sahara region for January–February 2022.</p> <p>The simulated mineral dust aerosol vertical distribution is tested by a comparison with aerosol lidar measurements from the lidar system <span class="inline-formula">Polly<sup>XT</sup></span>, located at Cape Verde. For a lofted mineral dust aerosol layer on 2 February at 05:00 UTC the lidar retrievals yield a dust mass concentration peak of 156 <span class="inline-formula">µg m<sup>−3</sup></span>, while the model calculates the mineral dust peak at 136 <span class="inline-formula">µg m<sup>−3</sup></span>. The results highlight the possibility of using the model with resolved mineral dust composition for interpretation of the lidar measurements since a higher absorption in the UV–Vis wavelengths is correlated with particles having a higher hematite content. Additionally, the comparison with in situ mineralogical measurements of dust aerosol particles shows that more of them are needed for model evaluation.</p>https://gmd.copernicus.org/articles/17/1271/2024/gmd-17-1271-2024.pdf
spellingShingle S. Gómez Maqueo Anaya
D. Althausen
M. Faust
H. Baars
B. Heinold
J. Hofer
I. Tegen
A. Ansmann
R. Engelmann
A. Skupin
B. Heese
K. Schepanski
The implementation of dust mineralogy in COSMO5.05-MUSCAT
Geoscientific Model Development
title The implementation of dust mineralogy in COSMO5.05-MUSCAT
title_full The implementation of dust mineralogy in COSMO5.05-MUSCAT
title_fullStr The implementation of dust mineralogy in COSMO5.05-MUSCAT
title_full_unstemmed The implementation of dust mineralogy in COSMO5.05-MUSCAT
title_short The implementation of dust mineralogy in COSMO5.05-MUSCAT
title_sort implementation of dust mineralogy in cosmo5 05 muscat
url https://gmd.copernicus.org/articles/17/1271/2024/gmd-17-1271-2024.pdf
work_keys_str_mv AT sgomezmaqueoanaya theimplementationofdustmineralogyincosmo505muscat
AT dalthausen theimplementationofdustmineralogyincosmo505muscat
AT mfaust theimplementationofdustmineralogyincosmo505muscat
AT hbaars theimplementationofdustmineralogyincosmo505muscat
AT bheinold theimplementationofdustmineralogyincosmo505muscat
AT jhofer theimplementationofdustmineralogyincosmo505muscat
AT itegen theimplementationofdustmineralogyincosmo505muscat
AT aansmann theimplementationofdustmineralogyincosmo505muscat
AT rengelmann theimplementationofdustmineralogyincosmo505muscat
AT askupin theimplementationofdustmineralogyincosmo505muscat
AT bheese theimplementationofdustmineralogyincosmo505muscat
AT kschepanski theimplementationofdustmineralogyincosmo505muscat
AT sgomezmaqueoanaya implementationofdustmineralogyincosmo505muscat
AT dalthausen implementationofdustmineralogyincosmo505muscat
AT mfaust implementationofdustmineralogyincosmo505muscat
AT hbaars implementationofdustmineralogyincosmo505muscat
AT bheinold implementationofdustmineralogyincosmo505muscat
AT jhofer implementationofdustmineralogyincosmo505muscat
AT itegen implementationofdustmineralogyincosmo505muscat
AT aansmann implementationofdustmineralogyincosmo505muscat
AT rengelmann implementationofdustmineralogyincosmo505muscat
AT askupin implementationofdustmineralogyincosmo505muscat
AT bheese implementationofdustmineralogyincosmo505muscat
AT kschepanski implementationofdustmineralogyincosmo505muscat