Schrödinger Harmonic Functions with Morrey Traces on Dirichlet Metric Measure Spaces

Assume that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>μ</mi><mo>)&l...

Full description

Bibliographic Details
Main Authors: Tianjun Shen, Bo Li
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/10/7/1112
_version_ 1797438544042524672
author Tianjun Shen
Bo Li
author_facet Tianjun Shen
Bo Li
author_sort Tianjun Shen
collection DOAJ
description Assume that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>μ</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a metric measure space that satisfies a <i>Q</i>-doubling condition with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula> and supports an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mn>2</mn></msup></semantics></math></inline-formula>-Poincaré inequality. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>𝓛</mi></semantics></math></inline-formula> be a nonnegative operator generalized by a Dirichlet form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">E</mi></semantics></math></inline-formula> and <i>V</i> be a Muckenhoupt weight belonging to a reverse Hölder class <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><msub><mi>H</mi><mi>q</mi></msub><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for some <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>≥</mo><mo>(</mo><mi>Q</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></mrow></semantics></math></inline-formula>. In this paper, we consider the Dirichlet problem for the Schrödinger equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><msubsup><mo>∂</mo><mi>t</mi><mn>2</mn></msubsup><mi>u</mi><mo>+</mo><mi>𝓛</mi><mi>u</mi><mo>+</mo><mi>V</mi><mi>u</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> on the upper half-space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>X</mi><mo>×</mo><msub><mi mathvariant="double-struck">R</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>, which has <i>f</i> as its the boundary value on <i>X</i>. We show that a solution <i>u</i> of the Schrödinger equation satisfies the Carleson type condition if and only if there exists a square Morrey function <i>f</i> such that <i>u</i> can be expressed by the Poisson integral of <i>f</i>. This extends the results of Song-Tian-Yan [Acta Math. Sin. (Engl. Ser.) 34 (2018), 787-800] from the Euclidean space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>Q</mi></msup></semantics></math></inline-formula> to the metric measure space <i>X</i> and improves the reverse Hölder index from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>≥</mo><mi>Q</mi></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>≥</mo><mo>(</mo><mi>Q</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></mrow></semantics></math></inline-formula>.
first_indexed 2024-03-09T11:38:28Z
format Article
id doaj.art-af1eb2015cd248b2b556229635092e9d
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-03-09T11:38:28Z
publishDate 2022-03-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-af1eb2015cd248b2b556229635092e9d2023-11-30T23:37:21ZengMDPI AGMathematics2227-73902022-03-01107111210.3390/math10071112Schrödinger Harmonic Functions with Morrey Traces on Dirichlet Metric Measure SpacesTianjun Shen0Bo Li1Center for Applied Mathematics, Tianjin University, Tianjin 300072, ChinaCollege of Data Science, Jiaxing University, Jiaxing 314001, ChinaAssume that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>(</mo><mi>X</mi><mo>,</mo><mi>d</mi><mo>,</mo><mi>μ</mi><mo>)</mo></mrow></semantics></math></inline-formula> is a metric measure space that satisfies a <i>Q</i>-doubling condition with <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>Q</mi><mo>></mo><mn>1</mn></mrow></semantics></math></inline-formula> and supports an <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mn>2</mn></msup></semantics></math></inline-formula>-Poincaré inequality. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi>𝓛</mi></semantics></math></inline-formula> be a nonnegative operator generalized by a Dirichlet form <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">E</mi></semantics></math></inline-formula> and <i>V</i> be a Muckenhoupt weight belonging to a reverse Hölder class <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>R</mi><msub><mi>H</mi><mi>q</mi></msub><mrow><mo>(</mo><mi>X</mi><mo>)</mo></mrow></mrow></semantics></math></inline-formula> for some <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>≥</mo><mo>(</mo><mi>Q</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></mrow></semantics></math></inline-formula>. In this paper, we consider the Dirichlet problem for the Schrödinger equation <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mo>−</mo><msubsup><mo>∂</mo><mi>t</mi><mn>2</mn></msubsup><mi>u</mi><mo>+</mo><mi>𝓛</mi><mi>u</mi><mo>+</mo><mi>V</mi><mi>u</mi><mo>=</mo><mn>0</mn></mrow></semantics></math></inline-formula> on the upper half-space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>X</mi><mo>×</mo><msub><mi mathvariant="double-struck">R</mi><mo>+</mo></msub></mrow></semantics></math></inline-formula>, which has <i>f</i> as its the boundary value on <i>X</i>. We show that a solution <i>u</i> of the Schrödinger equation satisfies the Carleson type condition if and only if there exists a square Morrey function <i>f</i> such that <i>u</i> can be expressed by the Poisson integral of <i>f</i>. This extends the results of Song-Tian-Yan [Acta Math. Sin. (Engl. Ser.) 34 (2018), 787-800] from the Euclidean space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi mathvariant="double-struck">R</mi><mi>Q</mi></msup></semantics></math></inline-formula> to the metric measure space <i>X</i> and improves the reverse Hölder index from <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>≥</mo><mi>Q</mi></mrow></semantics></math></inline-formula> to <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>q</mi><mo>≥</mo><mo>(</mo><mi>Q</mi><mo>+</mo><mn>1</mn><mo>)</mo><mo>/</mo><mn>2</mn></mrow></semantics></math></inline-formula>.https://www.mdpi.com/2227-7390/10/7/1112Schrödinger equationMorrey spaceDirichlet problemmetric measure space
spellingShingle Tianjun Shen
Bo Li
Schrödinger Harmonic Functions with Morrey Traces on Dirichlet Metric Measure Spaces
Mathematics
Schrödinger equation
Morrey space
Dirichlet problem
metric measure space
title Schrödinger Harmonic Functions with Morrey Traces on Dirichlet Metric Measure Spaces
title_full Schrödinger Harmonic Functions with Morrey Traces on Dirichlet Metric Measure Spaces
title_fullStr Schrödinger Harmonic Functions with Morrey Traces on Dirichlet Metric Measure Spaces
title_full_unstemmed Schrödinger Harmonic Functions with Morrey Traces on Dirichlet Metric Measure Spaces
title_short Schrödinger Harmonic Functions with Morrey Traces on Dirichlet Metric Measure Spaces
title_sort schrodinger harmonic functions with morrey traces on dirichlet metric measure spaces
topic Schrödinger equation
Morrey space
Dirichlet problem
metric measure space
url https://www.mdpi.com/2227-7390/10/7/1112
work_keys_str_mv AT tianjunshen schrodingerharmonicfunctionswithmorreytracesondirichletmetricmeasurespaces
AT boli schrodingerharmonicfunctionswithmorreytracesondirichletmetricmeasurespaces