A novel class of broad-spectrum active-site-directed 3C-like protease inhibitors with nanomolar antiviral activity against highly immune-evasive SARS-CoV-2 Omicron subvariants

Antivirals with broad coronavirus activity are important for treating high-risk individuals exposed to the constantly evolving SARS-CoV-2 variants of concern (VOCs) as well as emerging drug-resistant variants. We developed and characterized a novel class of active-site-directed 3-chymotrypsin-like p...

Full description

Bibliographic Details
Main Authors: Jimena Pérez-Vargas, Liam J. Worrall, Andrea D. Olmstead, Anh-Tien Ton, Jaeyong Lee, Ivan Villanueva, Connor A. H. Thompson, Svenja Dudek, Siobhan Ennis, Jason R. Smith, Tirosh Shapira, Joshua De Guzman, Shutong Gang, Fuqiang Ban, Marija Vuckovic, Michael Bielecki, Suzana Kovacic, Calem Kenward, Christopher Yee Hong, Danielle G. Gordon, Paul N. Levett, Mel Krajden, Richard Leduc, Pierre-Luc Boudreault, Masahiro Niikura, Mark Paetzel, Robert N. Young, Artem Cherkasov, Natalie C. J. Strynadka, François Jean
Format: Article
Language:English
Published: Taylor & Francis Group 2023-12-01
Series:Emerging Microbes and Infections
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/22221751.2023.2246594
Description
Summary:Antivirals with broad coronavirus activity are important for treating high-risk individuals exposed to the constantly evolving SARS-CoV-2 variants of concern (VOCs) as well as emerging drug-resistant variants. We developed and characterized a novel class of active-site-directed 3-chymotrypsin-like protease (3CLpro) inhibitors (C2–C5a). Our lead direct-acting antiviral (DAA), C5a, is a non-covalent, non-peptide with a dissociation constant of 170 nM against recombinant SARS-CoV-2 3CLpro. The compounds C2–C5a exhibit broad-spectrum activity against Omicron subvariants (BA.5, BQ.1.1, and XBB.1.5) and seasonal human coronavirus-229E infection in human cells. Notably, C5a has median effective concentrations of 30–50 nM against BQ.1.1 and XBB.1.5 in two different human cell lines. X-ray crystallography has confirmed the unique binding modes of C2–C5a to the 3CLpro, which can limit virus cross-resistance to emerging Paxlovid-resistant variants. We tested the effect of C5a with two of our newly discovered host-directed antivirals (HDAs): N-0385, a TMPRSS2 inhibitor, and bafilomycin D (BafD), a human vacuolar H+-ATPase [V-ATPase] inhibitor. We demonstrated a synergistic action of C5a in combination with N-0385 and BafD against Omicron BA.5 infection in human Calu-3 lung cells. Our findings underscore that a SARS-CoV-2 multi-targeted treatment for circulating Omicron subvariants based on DAAs (C5a) and HDAs (N-0385 or BafD) can lead to therapeutic benefits by enhancing treatment efficacy. Furthermore, the high-resolution structures of SARS-CoV-2 3CLpro in complex with C2–C5a will facilitate future rational optimization of our novel broad-spectrum active-site-directed 3C-like protease inhibitors.
ISSN:2222-1751