Time Optimal Hybrid Sliding Mode-PI Control for an Autonomous Underwater Robot

This paper presents an underwater robot control system using combination principle among sliding mode control (SMC), Pontryagin maximum principle and linear PI control. The SMC switches according to the Pontryagin's time optimal control principle, in which the solution is obtained by using neur...

Full description

Bibliographic Details
Main Authors: Theerayuth Chatchanayuenyong, Manukid Parnichkun
Format: Article
Language:English
Published: SAGE Publishing 2008-11-01
Series:International Journal of Advanced Robotic Systems
Subjects:
Online Access:http://www.intechopen.com/articles/show/title/time_optimal_hybrid_sliding_mode-pi_control_for_an_autonomous_underwater_robot
Description
Summary:This paper presents an underwater robot control system using combination principle among sliding mode control (SMC), Pontryagin maximum principle and linear PI control. The SMC switches according to the Pontryagin's time optimal control principle, in which the solution is obtained by using neural network approach to yield a time optimal response at its reaching phase. PI control is used in place of the SMC at the switching phase to avoid high undesired control activity. Performance of the proposed controller is compared with various classical SMCs and conventional linear control systems. Such comparisons ensure the implementation success and prove it as a real time-optimal controller. The results show the controller's good abilities to deal with plant nonlinearity and parameter uncertainties. The controller yields a time optimal control response without high control chattering.
ISSN:1729-8806
1729-8814