Cotton Fiber and Carbon Materials Filters for Efficient Wastewater Purification
Carbon materials and cotton fibers (CFs) are eco-friendly and cost-effective solutions for water purification. However, enhancing the filtration efficiency of these materials remains challenging. In this study, the capacity of heat-treated sorbents (CFs and low-temperature graphite intercalation...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universitas Indonesia
2020-12-01
|
Series: | International Journal of Technology |
Subjects: | |
Online Access: | https://ijtech.eng.ui.ac.id/article/view/4538 |
Summary: | Carbon
materials and cotton fibers (CFs) are eco-friendly and cost-effective solutions
for water purification. However, enhancing the filtration efficiency of these
materials remains challenging. In this study, the capacity of heat-treated
sorbents (CFs and low-temperature graphite intercalation compounds (LT-GICs))
to improve the efficiency of wastewater purification from heavy metals and
petroleum compounds, was investigated. The properties of the thermally modified
CFs were studied in order to obtain a material which is highly efficient in
purifying wastewater from heavy metal ions (HMIs). The duration of sorption
equilibrium and the optimal ratio of heat-treated cotton fibers (HTCFs) and
wastewater were determined. The adsorption capacities of CFs for iodine and
methylene blue were determined before and after the heat treatment.
Experimental results indicated that thermal treatment of CFs resulted in
increased numbers of micropores and mesopores, indicating a high sorption
capacity for petroleum products (PPs) in wastewater (A = 11.5 g/g) with an
efficiency score of 90%. Furthermore, LT-GIC/CF composite filters were
optimized for efficient purification. The results indicated that a filter with
a composition of 1 g LT-GIC + 3 g CF had the highest sorption capacity for HMIs
(28.7 mg/g) and PPs (80.6%) due to its looser surface structure. The X-ray
phase analysis of the sintered composite filters showed the presence of carbon
in the amorphous phase, which had a similar structure to the activated carbon
from black coal. In summary, the high sorption capacities and simple
preparation processes of LT-GIC/CF composites make them potential candidates
for wastewater purification. |
---|---|
ISSN: | 2086-9614 2087-2100 |