A Multi-Granularity Heterogeneous Graph for Extractive Text Summarization

Extractive text summarization selects the most important sentences from a document, preserves their original meaning, and produces an objective and fact-based summary. It is faster and less computationally intensive than abstract summarization techniques. Learning cross-sentence relationships is cru...

Full description

Bibliographic Details
Main Authors: Henghui Zhao, Wensheng Zhang, Mengxing Huang, Siling Feng, Yuanyuan Wu
Format: Article
Language:English
Published: MDPI AG 2023-05-01
Series:Electronics
Subjects:
Online Access:https://www.mdpi.com/2079-9292/12/10/2184
Description
Summary:Extractive text summarization selects the most important sentences from a document, preserves their original meaning, and produces an objective and fact-based summary. It is faster and less computationally intensive than abstract summarization techniques. Learning cross-sentence relationships is crucial for extractive text summarization. However, most of the language models currently in use process text data sequentially, which makes it difficult to capture such inter-sentence relations, especially in long documents. This paper proposes an extractive summarization model based on the graph neural network (GNN) to address this problem. The model effectively represents cross-sentence relationships using a graph-structured document representation. In addition to sentence nodes, we introduce two nodes with different granularity in the graph structure, words and topics, which bring different levels of semantic information. The node representations are updated by the graph attention network (GAT). The final summary is obtained using the binary classification of the sentence nodes. Our text summarization method was demonstrated to be highly effective, as supported by the results of our experiments on the CNN/DM and NYT datasets. To be specific, our approach outperformed baseline models of the same type in terms of ROUGE scores on both datasets, indicating the potential of our proposed model for enhancing text summarization tasks.
ISSN:2079-9292