Summary: | In this paper, we consider a two-dimension symmetric random walk with reset. We give, in the first part, some results about the distribution of every component. In the second part, we give some results about the final altitude <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>Z</mi><mi>n</mi></msub></semantics></math></inline-formula>. Finally, we analyse the statistical properties of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msubsup><mi>N</mi><mi>n</mi><mi>X</mi></msubsup></semantics></math></inline-formula>, the number of resets (the number of returns to state 1 after <i>n</i> steps) of the first component of the random walk. As a principal tool in these studies, we use the probability generating function.
|