Input–output description of microwave radiation in the dynamical Coulomb blockade

We study microwave radiation emitted by a small voltage-biased Josephson junction connected to a superconducting transmission line. An input–output formalism for the radiation field is established, using a perturbation expansion in the junction's critical current. Using output field operators s...

Full description

Bibliographic Details
Main Authors: J Leppäkangas, G Johansson, M Marthaler, M Fogelström
Format: Article
Language:English
Published: IOP Publishing 2014-01-01
Series:New Journal of Physics
Online Access:https://doi.org/10.1088/1367-2630/16/1/015015
Description
Summary:We study microwave radiation emitted by a small voltage-biased Josephson junction connected to a superconducting transmission line. An input–output formalism for the radiation field is established, using a perturbation expansion in the junction's critical current. Using output field operators solved up to the second order, we estimate the spectral density and the second-order coherence of the emitted field. For typical transmission line impedances and at frequencies below the main emission peak at the Josephson frequency, radiation occurs predominantly due to two-photon emission. This emission is characterized by a high degree of photon bunching if detected symmetrically around half of the Josephson frequency. Strong phase fluctuations in the transmission line make related nonclassical phase-dependent amplitude correlations short lived, and there is no steady-state two-mode squeezing. However, the radiation is shown to violate the classical Cauchy–Schwarz inequality of intensity cross-correlations, demonstrating the nonclassicality of the photon pair production in this region.
ISSN:1367-2630