A Study on Fibonacci and Lucas Bihypernomials

The bihyperbolic numbers are extension of hyperbolic numbers to four dimensions. In this paper we introduce and study the Fibonacci and Lucas bihypernomials, i.e., polynomials, which are a generalization of the bihyperbolic Fibonacci numbers and the bihyperbolic Lucas numbers, respectively.

Bibliographic Details
Main Authors: Szynal-Liana Anetta, Włoch Iwona
Format: Article
Language:English
Published: University of Zielona Góra 2022-10-01
Series:Discussiones Mathematicae - General Algebra and Applications
Subjects:
Online Access:https://doi.org/10.7151/dmgaa.1399
_version_ 1797724278617014272
author Szynal-Liana Anetta
Włoch Iwona
author_facet Szynal-Liana Anetta
Włoch Iwona
author_sort Szynal-Liana Anetta
collection DOAJ
description The bihyperbolic numbers are extension of hyperbolic numbers to four dimensions. In this paper we introduce and study the Fibonacci and Lucas bihypernomials, i.e., polynomials, which are a generalization of the bihyperbolic Fibonacci numbers and the bihyperbolic Lucas numbers, respectively.
first_indexed 2024-03-12T10:15:04Z
format Article
id doaj.art-af6faeefd0084b49b35a893657145a50
institution Directory Open Access Journal
issn 2084-0373
language English
last_indexed 2024-03-12T10:15:04Z
publishDate 2022-10-01
publisher University of Zielona Góra
record_format Article
series Discussiones Mathematicae - General Algebra and Applications
spelling doaj.art-af6faeefd0084b49b35a893657145a502023-09-02T10:34:15ZengUniversity of Zielona GóraDiscussiones Mathematicae - General Algebra and Applications2084-03732022-10-0142240942310.7151/dmgaa.1399A Study on Fibonacci and Lucas BihypernomialsSzynal-Liana Anetta0Włoch Iwona1Rzeszow University of Technology, Faculty of Mathematics and Applied Physics, al. Powstańców Warszawy 12, 35–959Rzeszów, PolandRzeszow University of Technology, Faculty of Mathematics and Applied Physics, al. Powstańców Warszawy 12, 35–959Rzeszów, PolandThe bihyperbolic numbers are extension of hyperbolic numbers to four dimensions. In this paper we introduce and study the Fibonacci and Lucas bihypernomials, i.e., polynomials, which are a generalization of the bihyperbolic Fibonacci numbers and the bihyperbolic Lucas numbers, respectively.https://doi.org/10.7151/dmgaa.1399fibonacci numbersrecurrence relationshyperbolic numbersbihyperbolic numberspolynomials11b3911b37
spellingShingle Szynal-Liana Anetta
Włoch Iwona
A Study on Fibonacci and Lucas Bihypernomials
Discussiones Mathematicae - General Algebra and Applications
fibonacci numbers
recurrence relations
hyperbolic numbers
bihyperbolic numbers
polynomials
11b39
11b37
title A Study on Fibonacci and Lucas Bihypernomials
title_full A Study on Fibonacci and Lucas Bihypernomials
title_fullStr A Study on Fibonacci and Lucas Bihypernomials
title_full_unstemmed A Study on Fibonacci and Lucas Bihypernomials
title_short A Study on Fibonacci and Lucas Bihypernomials
title_sort study on fibonacci and lucas bihypernomials
topic fibonacci numbers
recurrence relations
hyperbolic numbers
bihyperbolic numbers
polynomials
11b39
11b37
url https://doi.org/10.7151/dmgaa.1399
work_keys_str_mv AT szynallianaanetta astudyonfibonacciandlucasbihypernomials
AT włochiwona astudyonfibonacciandlucasbihypernomials
AT szynallianaanetta studyonfibonacciandlucasbihypernomials
AT włochiwona studyonfibonacciandlucasbihypernomials