A Study on Fibonacci and Lucas Bihypernomials
The bihyperbolic numbers are extension of hyperbolic numbers to four dimensions. In this paper we introduce and study the Fibonacci and Lucas bihypernomials, i.e., polynomials, which are a generalization of the bihyperbolic Fibonacci numbers and the bihyperbolic Lucas numbers, respectively.
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
University of Zielona Góra
2022-10-01
|
Series: | Discussiones Mathematicae - General Algebra and Applications |
Subjects: | |
Online Access: | https://doi.org/10.7151/dmgaa.1399 |
_version_ | 1797724278617014272 |
---|---|
author | Szynal-Liana Anetta Włoch Iwona |
author_facet | Szynal-Liana Anetta Włoch Iwona |
author_sort | Szynal-Liana Anetta |
collection | DOAJ |
description | The bihyperbolic numbers are extension of hyperbolic numbers to four dimensions. In this paper we introduce and study the Fibonacci and Lucas bihypernomials, i.e., polynomials, which are a generalization of the bihyperbolic Fibonacci numbers and the bihyperbolic Lucas numbers, respectively. |
first_indexed | 2024-03-12T10:15:04Z |
format | Article |
id | doaj.art-af6faeefd0084b49b35a893657145a50 |
institution | Directory Open Access Journal |
issn | 2084-0373 |
language | English |
last_indexed | 2024-03-12T10:15:04Z |
publishDate | 2022-10-01 |
publisher | University of Zielona Góra |
record_format | Article |
series | Discussiones Mathematicae - General Algebra and Applications |
spelling | doaj.art-af6faeefd0084b49b35a893657145a502023-09-02T10:34:15ZengUniversity of Zielona GóraDiscussiones Mathematicae - General Algebra and Applications2084-03732022-10-0142240942310.7151/dmgaa.1399A Study on Fibonacci and Lucas BihypernomialsSzynal-Liana Anetta0Włoch Iwona1Rzeszow University of Technology, Faculty of Mathematics and Applied Physics, al. Powstańców Warszawy 12, 35–959Rzeszów, PolandRzeszow University of Technology, Faculty of Mathematics and Applied Physics, al. Powstańców Warszawy 12, 35–959Rzeszów, PolandThe bihyperbolic numbers are extension of hyperbolic numbers to four dimensions. In this paper we introduce and study the Fibonacci and Lucas bihypernomials, i.e., polynomials, which are a generalization of the bihyperbolic Fibonacci numbers and the bihyperbolic Lucas numbers, respectively.https://doi.org/10.7151/dmgaa.1399fibonacci numbersrecurrence relationshyperbolic numbersbihyperbolic numberspolynomials11b3911b37 |
spellingShingle | Szynal-Liana Anetta Włoch Iwona A Study on Fibonacci and Lucas Bihypernomials Discussiones Mathematicae - General Algebra and Applications fibonacci numbers recurrence relations hyperbolic numbers bihyperbolic numbers polynomials 11b39 11b37 |
title | A Study on Fibonacci and Lucas Bihypernomials |
title_full | A Study on Fibonacci and Lucas Bihypernomials |
title_fullStr | A Study on Fibonacci and Lucas Bihypernomials |
title_full_unstemmed | A Study on Fibonacci and Lucas Bihypernomials |
title_short | A Study on Fibonacci and Lucas Bihypernomials |
title_sort | study on fibonacci and lucas bihypernomials |
topic | fibonacci numbers recurrence relations hyperbolic numbers bihyperbolic numbers polynomials 11b39 11b37 |
url | https://doi.org/10.7151/dmgaa.1399 |
work_keys_str_mv | AT szynallianaanetta astudyonfibonacciandlucasbihypernomials AT włochiwona astudyonfibonacciandlucasbihypernomials AT szynallianaanetta studyonfibonacciandlucasbihypernomials AT włochiwona studyonfibonacciandlucasbihypernomials |