Antiferromagnetic order in hybrid electromagnetic metamaterials

We demonstrate experimentally a new type of order in optical magnetism resembling the staggered structure of spins in antiferromagnetic ordered materials. We study hybrid electromagnetic metasurfaces created by assembling hybrid meta-atoms formed by metallic split-ring resonators and dielectric part...

Full description

Bibliographic Details
Main Authors: Andrey E Miroshnichenko, Dmitry Filonov, Boris Lukyanchuk, Yuri Kivshar
Format: Article
Language:English
Published: IOP Publishing 2017-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/aa6a33
Description
Summary:We demonstrate experimentally a new type of order in optical magnetism resembling the staggered structure of spins in antiferromagnetic ordered materials. We study hybrid electromagnetic metasurfaces created by assembling hybrid meta-atoms formed by metallic split-ring resonators and dielectric particles with a high refractive index, both supporting optically-induced magnetic dipole resonances of different origin. Each pair (or ‘metamolecule’) is characterized by two interacting magnetic dipole moments with the distance-dependent magnetization resembling the spin exchange interaction in magnetic materials. By directly mapping the structure of the electromagnetic fields, we demonstrate experimentally that strong coupling between the optically-induced magnetic moments of different origin can flip the magnetisation orientation in a metamolecule creating an antiferromagnetic lattice of staggered optically-induced magnetic moments in hybrid metasurfaces.
ISSN:1367-2630