A Method Improves Speech Recognition with Contrastive Learning in Low-Resource Languages
Building an effective automatic speech recognition system typically requires a large amount of high-quality labeled data; However, this can be challenging for low-resource languages. Currently, self-supervised contrastive learning has shown promising results in low-resource automatic speech recognit...
Principais autores: | Lixu Sun, Nurmemet Yolwas, Lina Jiang |
---|---|
Formato: | Artigo |
Idioma: | English |
Publicado em: |
MDPI AG
2023-04-01
|
coleção: | Applied Sciences |
Assuntos: | |
Acesso em linha: | https://www.mdpi.com/2076-3417/13/8/4836 |
Registros relacionados
-
Improving Aphasic Speech Recognition by Using Novel Semi-Supervised Learning Methods on AphasiaBank for English and Spanish
por: Iván G. Torre, et al.
Publicado em: (2021-09-01) -
Effects of Data Augmentations on Speech Emotion Recognition
por: Bagus Tris Atmaja, et al.
Publicado em: (2022-08-01) -
Automatic Speech Disfluency Detection Using wav2vec2.0 for Different Languages with Variable Lengths
por: Jiajun Liu, et al.
Publicado em: (2023-06-01) -
Novel Speech Recognition Systems Applied to Forensics within Child Exploitation: Wav2vec2.0 vs. Whisper
por: Juan Camilo Vásquez-Correa, et al.
Publicado em: (2023-02-01) -
Optimasi Teknologi WAV2Vec 2.0 menggunakan Spectral Masking untuk meningkatkan Kualitas Transkripsi Teks Video bagi Tuna Rungu
por: ACHMAD NOERCHOLIS, et al.
Publicado em: (2024-12-01)