Mineral matter composition of drained floodplain soils in north-eastern Poland

Soils in two river valleys (Rozoga and Omulew) in north-eastern Poland were investigated. The valleys are located on a sandy outwash plain formed during the Vistulian (Weichelian) Glaciation. The soils are drained, used as meadows and classified as Fluvic Umbric Gleysol, Fluvic Mollic Gleysol, and E...

Full description

Bibliographic Details
Main Authors: Długosz Jacek, Kalisz Barbara, Łachacz Andrzej
Format: Article
Language:English
Published: Soil Science Society of Poland 2018-09-01
Series:Soil Science Annual
Subjects:
Online Access:http://www.degruyter.com/view/j/ssa.2018.69.issue-3/ssa-2018-0019/ssa-2018-0019.xml?format=INT
Description
Summary:Soils in two river valleys (Rozoga and Omulew) in north-eastern Poland were investigated. The valleys are located on a sandy outwash plain formed during the Vistulian (Weichelian) Glaciation. The soils are drained, used as meadows and classified as Fluvic Umbric Gleysol, Fluvic Mollic Gleysol, and Eutric Fluvic Histic Gleysol (IUSS Working Group WRB 2015). The aim of the study was to identify the composition of mineral matter and to determine the types of clay minerals and intermediate stages of clay minerals by means of the X-ray diffraction (XRD). The studied floodplain soils are rich in organic matter and contain considerable mineral alluvial admixtures. The content of clay fraction (< 2.0 μm) is low (0.02–5.61% of total mineral matter). Higher content of clay fraction was noted in soils with elevated content of organic matter, which can be evidence of simultaneous accumulation of both components. In deeper depressions occurring in river valleys (oxbow lakes), a specific deposit termed silty telmatic mud (16–24% TOC, 50–75% silt, 3.1–5.6% clay fraction content) was accumulated. On the other hand, in shallow depressions, a muddy deposit was accumulated (5.7–7.7% TOC, sandy texture). The main identified clay minerals were smectite, vermiculite, illite and kaolinite as well as variety of mixed-layer clays. Alluvial clay admixture in studied soil formations showed mineralogical similarity to typical floodplain mineral soils (Fluvisols). Mineral fraction of studied soils is mostly of allochthonous origin.
ISSN:2300-4975