Spatial epidemiological modelling of infection by Vibrio aestuarianus shows that connectivity and temperature control oyster mortality
Vibrio aestuarianus infection in oyster populations causes massive mortality, resulting in losses for oyster farmers. Such dynamics result from host-pathogen interactions and contagion through water-borne transmission. To assess the spatiotemporal spread of V. aestuarianus infection and associated o...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Inter-Research
2020-11-01
|
Series: | Aquaculture Environment Interactions |
Online Access: | https://www.int-res.com/abstracts/aei/v12/p511-527/ |
_version_ | 1819144026037682176 |
---|---|
author | C Lupo BL Dutta S Petton P Ezanno D Tourbiez MA Travers F Pernet C Bacher |
author_facet | C Lupo BL Dutta S Petton P Ezanno D Tourbiez MA Travers F Pernet C Bacher |
author_sort | C Lupo |
collection | DOAJ |
description | Vibrio aestuarianus infection in oyster populations causes massive mortality, resulting in losses for oyster farmers. Such dynamics result from host-pathogen interactions and contagion through water-borne transmission. To assess the spatiotemporal spread of V. aestuarianus infection and associated oyster mortality at a bay scale, we built a mathematical model informed by experimental infection data at 2 temperatures and spatially dependent marine connectivity of oyster farms. We applied the model to a real system and tested the importance of each factor using a number of modelling scenarios. Results suggest that introducing V. aestuarianus in a fully susceptible adult oyster population in the bay would lead to the mortality of all farmed oysters over 6 to 12 mo, depending on the location in which infection was initiated. The effect of temperature was captured by the basic reproduction number (R0), which was >1 at high seawater temperatures, as opposed to values <1 at low temperatures. At the ecosystem scale, simulations showed the existence of long-distance dispersal of free-living bacteria. The western part of the bay could be reached by bacteria originating from the eastern side, though the spread time was greatly increased. Further developments of the model, including the consideration of the anthropogenic movements of oysters and oyster-specific sensitivity factors, would allow the development of accurate maps of epidemiological risks and help define aquaculture zoning. |
first_indexed | 2024-12-22T12:35:35Z |
format | Article |
id | doaj.art-af951d5b10cc49c69b5c85c09761ffc9 |
institution | Directory Open Access Journal |
issn | 1869-215X 1869-7534 |
language | English |
last_indexed | 2024-12-22T12:35:35Z |
publishDate | 2020-11-01 |
publisher | Inter-Research |
record_format | Article |
series | Aquaculture Environment Interactions |
spelling | doaj.art-af951d5b10cc49c69b5c85c09761ffc92022-12-21T18:25:35ZengInter-ResearchAquaculture Environment Interactions1869-215X1869-75342020-11-011251152710.3354/aei00379Spatial epidemiological modelling of infection by Vibrio aestuarianus shows that connectivity and temperature control oyster mortalityC Lupo0BL Dutta1S Petton2P Ezanno3D Tourbiez4MA Travers5F Pernet6C Bacher7Ifremer, SG2M, F-17390 La Tremblade, FranceIfremer, SG2M, F-17390 La Tremblade, FranceUniversité Brest, Ifremer, CNRS, IRD, LEMAR, 29840 Plouzané, FranceINRAE, Oniris, BIOEPAR, 44300 Nantes, FranceIfremer, SG2M, F-17390 La Tremblade, FranceIfremer, SG2M, F-17390 La Tremblade, FranceUniversité Brest, Ifremer, CNRS, IRD, LEMAR, 29840 Plouzané, FranceIfremer, DYNECO, F-29580 Plouzané, FranceVibrio aestuarianus infection in oyster populations causes massive mortality, resulting in losses for oyster farmers. Such dynamics result from host-pathogen interactions and contagion through water-borne transmission. To assess the spatiotemporal spread of V. aestuarianus infection and associated oyster mortality at a bay scale, we built a mathematical model informed by experimental infection data at 2 temperatures and spatially dependent marine connectivity of oyster farms. We applied the model to a real system and tested the importance of each factor using a number of modelling scenarios. Results suggest that introducing V. aestuarianus in a fully susceptible adult oyster population in the bay would lead to the mortality of all farmed oysters over 6 to 12 mo, depending on the location in which infection was initiated. The effect of temperature was captured by the basic reproduction number (R0), which was >1 at high seawater temperatures, as opposed to values <1 at low temperatures. At the ecosystem scale, simulations showed the existence of long-distance dispersal of free-living bacteria. The western part of the bay could be reached by bacteria originating from the eastern side, though the spread time was greatly increased. Further developments of the model, including the consideration of the anthropogenic movements of oysters and oyster-specific sensitivity factors, would allow the development of accurate maps of epidemiological risks and help define aquaculture zoning.https://www.int-res.com/abstracts/aei/v12/p511-527/ |
spellingShingle | C Lupo BL Dutta S Petton P Ezanno D Tourbiez MA Travers F Pernet C Bacher Spatial epidemiological modelling of infection by Vibrio aestuarianus shows that connectivity and temperature control oyster mortality Aquaculture Environment Interactions |
title | Spatial epidemiological modelling of infection by Vibrio aestuarianus shows that connectivity and temperature control oyster mortality |
title_full | Spatial epidemiological modelling of infection by Vibrio aestuarianus shows that connectivity and temperature control oyster mortality |
title_fullStr | Spatial epidemiological modelling of infection by Vibrio aestuarianus shows that connectivity and temperature control oyster mortality |
title_full_unstemmed | Spatial epidemiological modelling of infection by Vibrio aestuarianus shows that connectivity and temperature control oyster mortality |
title_short | Spatial epidemiological modelling of infection by Vibrio aestuarianus shows that connectivity and temperature control oyster mortality |
title_sort | spatial epidemiological modelling of infection by vibrio aestuarianus shows that connectivity and temperature control oyster mortality |
url | https://www.int-res.com/abstracts/aei/v12/p511-527/ |
work_keys_str_mv | AT clupo spatialepidemiologicalmodellingofinfectionbyvibrioaestuarianusshowsthatconnectivityandtemperaturecontroloystermortality AT bldutta spatialepidemiologicalmodellingofinfectionbyvibrioaestuarianusshowsthatconnectivityandtemperaturecontroloystermortality AT spetton spatialepidemiologicalmodellingofinfectionbyvibrioaestuarianusshowsthatconnectivityandtemperaturecontroloystermortality AT pezanno spatialepidemiologicalmodellingofinfectionbyvibrioaestuarianusshowsthatconnectivityandtemperaturecontroloystermortality AT dtourbiez spatialepidemiologicalmodellingofinfectionbyvibrioaestuarianusshowsthatconnectivityandtemperaturecontroloystermortality AT matravers spatialepidemiologicalmodellingofinfectionbyvibrioaestuarianusshowsthatconnectivityandtemperaturecontroloystermortality AT fpernet spatialepidemiologicalmodellingofinfectionbyvibrioaestuarianusshowsthatconnectivityandtemperaturecontroloystermortality AT cbacher spatialepidemiologicalmodellingofinfectionbyvibrioaestuarianusshowsthatconnectivityandtemperaturecontroloystermortality |