Optimasi Algoritma Naive Bayes Menggunakan Metode Cross Validation Untuk Meningkatkan Akurasi Prediksi Tingkat Kelulusan Tepat Waktu

Education at this time is an important requirement in facing the demands of an increasingly advanced era in technolo-gy. To compensate this, the existing educational standards in universities must also be improved, this is a bit much affect the pattern of teaching from universities that produce qual...

Full description

Bibliographic Details
Main Authors: Yohakim Benedictus Samponu, Kusrini Kusrini
Format: Article
Language:English
Published: P3M Politeknik Negeri Banjarmasin 2018-01-01
Series:Jurnal ELTIKOM: Jurnal Teknik Elektro, Teknologi Informasi dan Komputer
Subjects:
Online Access:http://eltikom.poliban.ac.id/index.php/eltikom/article/view/29
_version_ 1818851847783317504
author Yohakim Benedictus Samponu
Kusrini Kusrini
author_facet Yohakim Benedictus Samponu
Kusrini Kusrini
author_sort Yohakim Benedictus Samponu
collection DOAJ
description Education at this time is an important requirement in facing the demands of an increasingly advanced era in technolo-gy. To compensate this, the existing educational standards in universities must also be improved, this is a bit much affect the pattern of teaching from universities that produce qualified graduates who can compete in the world of work later and indirectly give a positive impact on the university itself. Qualified graduates are of course not only depending on the role of a university but also majors and quality of education as long as students are still in high school / vocational school also plays an important role. Results of the on-time graduation rate prediction research can be used as an information to im-prove the quality and optimization of the education system but it requires a maximum degree of accuracy. This research predicts on time graduation rates by conducting analysis using data mining classification techniques. Naïve Bayes algo-rithm that are used for this research will be discussed as a reference in conducting research. The author performs a series of different experimental scenarios / cross validation to perform comparisons that can give a difference in the level of ac-curacy gained from this research. The results of this research indicate that with the addition of Cross Validation testing scenario there is an increase of 2% accuracy of the test.
first_indexed 2024-12-19T07:11:32Z
format Article
id doaj.art-af9bb90c7b734c5681b00e044abc6465
institution Directory Open Access Journal
issn 2598-3245
2598-3288
language English
last_indexed 2024-12-19T07:11:32Z
publishDate 2018-01-01
publisher P3M Politeknik Negeri Banjarmasin
record_format Article
series Jurnal ELTIKOM: Jurnal Teknik Elektro, Teknologi Informasi dan Komputer
spelling doaj.art-af9bb90c7b734c5681b00e044abc64652022-12-21T20:31:11ZengP3M Politeknik Negeri BanjarmasinJurnal ELTIKOM: Jurnal Teknik Elektro, Teknologi Informasi dan Komputer2598-32452598-32882018-01-0112566310.31961/eltikom.v1i2.2929Optimasi Algoritma Naive Bayes Menggunakan Metode Cross Validation Untuk Meningkatkan Akurasi Prediksi Tingkat Kelulusan Tepat WaktuYohakim Benedictus Samponu0Kusrini Kusrini1Universitas Amikom YogyakartaUniversitas Amikom YogyakartaEducation at this time is an important requirement in facing the demands of an increasingly advanced era in technolo-gy. To compensate this, the existing educational standards in universities must also be improved, this is a bit much affect the pattern of teaching from universities that produce qualified graduates who can compete in the world of work later and indirectly give a positive impact on the university itself. Qualified graduates are of course not only depending on the role of a university but also majors and quality of education as long as students are still in high school / vocational school also plays an important role. Results of the on-time graduation rate prediction research can be used as an information to im-prove the quality and optimization of the education system but it requires a maximum degree of accuracy. This research predicts on time graduation rates by conducting analysis using data mining classification techniques. Naïve Bayes algo-rithm that are used for this research will be discussed as a reference in conducting research. The author performs a series of different experimental scenarios / cross validation to perform comparisons that can give a difference in the level of ac-curacy gained from this research. The results of this research indicate that with the addition of Cross Validation testing scenario there is an increase of 2% accuracy of the test.http://eltikom.poliban.ac.id/index.php/eltikom/article/view/29data mining, Cross Validation, Naïve Bayes
spellingShingle Yohakim Benedictus Samponu
Kusrini Kusrini
Optimasi Algoritma Naive Bayes Menggunakan Metode Cross Validation Untuk Meningkatkan Akurasi Prediksi Tingkat Kelulusan Tepat Waktu
Jurnal ELTIKOM: Jurnal Teknik Elektro, Teknologi Informasi dan Komputer
data mining, Cross Validation, Naïve Bayes
title Optimasi Algoritma Naive Bayes Menggunakan Metode Cross Validation Untuk Meningkatkan Akurasi Prediksi Tingkat Kelulusan Tepat Waktu
title_full Optimasi Algoritma Naive Bayes Menggunakan Metode Cross Validation Untuk Meningkatkan Akurasi Prediksi Tingkat Kelulusan Tepat Waktu
title_fullStr Optimasi Algoritma Naive Bayes Menggunakan Metode Cross Validation Untuk Meningkatkan Akurasi Prediksi Tingkat Kelulusan Tepat Waktu
title_full_unstemmed Optimasi Algoritma Naive Bayes Menggunakan Metode Cross Validation Untuk Meningkatkan Akurasi Prediksi Tingkat Kelulusan Tepat Waktu
title_short Optimasi Algoritma Naive Bayes Menggunakan Metode Cross Validation Untuk Meningkatkan Akurasi Prediksi Tingkat Kelulusan Tepat Waktu
title_sort optimasi algoritma naive bayes menggunakan metode cross validation untuk meningkatkan akurasi prediksi tingkat kelulusan tepat waktu
topic data mining, Cross Validation, Naïve Bayes
url http://eltikom.poliban.ac.id/index.php/eltikom/article/view/29
work_keys_str_mv AT yohakimbenedictussamponu optimasialgoritmanaivebayesmenggunakanmetodecrossvalidationuntukmeningkatkanakurasiprediksitingkatkelulusantepatwaktu
AT kusrinikusrini optimasialgoritmanaivebayesmenggunakanmetodecrossvalidationuntukmeningkatkanakurasiprediksitingkatkelulusantepatwaktu