New Holographic Dark Energy Model in Brans-Dicke Theory

We study the cosmic evolution of the Bianchi type I universe by using new holographic dark energy model in the context of the Brans-Dicke theory for both non-interacting and interacting cases between dark energy and dark matter. We evaluate the equation of state for dark energy ω D a...

Full description

Bibliographic Details
Main Authors: M. Sharif, Syed Asif Ali Shah, Kazuharu Bamba
Format: Article
Language:English
Published: MDPI AG 2018-05-01
Series:Symmetry
Subjects:
Online Access:http://www.mdpi.com/2073-8994/10/5/153
Description
Summary:We study the cosmic evolution of the Bianchi type I universe by using new holographic dark energy model in the context of the Brans-Dicke theory for both non-interacting and interacting cases between dark energy and dark matter. We evaluate the equation of state for dark energy ω D and draw the ω D − ω ˙ D plane, where the dot denotes the time derivative. It is found that a stage in which the cosmic expansion is accelerating can be realized in both cases. In addition, we investigate the stability of the model by analyzing the sound speed. As a result, it is demonstrated that for both cases, the behavior of the sound speed becomes unstable. Furthermore, with the Om-diagnostic tool, it is shown that the quintessence region of the universe can exist.
ISSN:2073-8994