Hyperspectral Image Restoration under Complex Multi-Band Noises

Hyperspectral images (HSIs) are always corrupted by complicated forms of noise during the acquisition process, such as Gaussian noise, impulse noise, stripes, deadlines and so on. Specifically, different bands of the practical HSIs generally contain different noises of evidently distinct type and ex...

Full description

Bibliographic Details
Main Authors: Zongsheng Yue, Deyu Meng, Yongqing Sun, Qian Zhao
Format: Article
Language:English
Published: MDPI AG 2018-10-01
Series:Remote Sensing
Subjects:
Online Access:http://www.mdpi.com/2072-4292/10/10/1631
Description
Summary:Hyperspectral images (HSIs) are always corrupted by complicated forms of noise during the acquisition process, such as Gaussian noise, impulse noise, stripes, deadlines and so on. Specifically, different bands of the practical HSIs generally contain different noises of evidently distinct type and extent. While current HSI restoration methods give less consideration to such band-noise-distinctness issues, this study elaborately constructs a new HSI restoration technique, aimed at more faithfully and comprehensively taking such noise characteristics into account. Particularly, through a two-level hierarchical Dirichlet process (HDP) to model the HSI noise structure, the noise of each band is depicted by a Dirichlet process Gaussian mixture model (DP-GMM), in which its complexity can be flexibly adapted in an automatic manner. Besides, the DP-GMM of each band comes from a higher level DP-GMM that relates the noise of different bands. The variational Bayes algorithm is also designed to solve this model, and closed-form updating equations for all involved parameters are deduced. The experiment indicates that, in terms of the mean peak signal-to-noise ratio (MPSNR), the proposed method is on average 1 dB higher compared with the existing state-of-the-art methods, as well as performing better in terms of the mean structural similarity index (MSSIM) and Erreur Relative Globale Adimensionnelle de Synthèse (ERGAS).
ISSN:2072-4292