On Johnson’s “Sufficientness” Postulates for Feature-Sampling Models

In the 1920s, the English philosopher W.E. Johnson introduced a characterization of the symmetric Dirichlet prior distribution in terms of its predictive distribution. This is typically referred to as Johnson’s “sufficientness” postulate, and it has been the subject of many contributions in Bayesian...

Full description

Bibliographic Details
Main Authors: Federico Camerlenghi, Stefano Favaro
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/22/2891
Description
Summary:In the 1920s, the English philosopher W.E. Johnson introduced a characterization of the symmetric Dirichlet prior distribution in terms of its predictive distribution. This is typically referred to as Johnson’s “sufficientness” postulate, and it has been the subject of many contributions in Bayesian statistics, leading to predictive characterization for infinite-dimensional generalizations of the Dirichlet distribution, i.e., species-sampling models. In this paper, we review “sufficientness” postulates for species-sampling models, and then investigate analogous predictive characterizations for the more general feature-sampling models. In particular, we present a “sufficientness” postulate for a class of feature-sampling models referred to as Scaled Processes (SPs), and then discuss analogous characterizations in the general setup of feature-sampling models.
ISSN:2227-7390