The zinc finger protein TcZFP2 binds target mRNAs enriched during Trypanosoma cruzi metacyclogenesis

Trypanosomes are parasitic protozoa in which gene expression is primarily controlled through the regulation of mRNA stability and translation. This post-transcriptional control is mediated by various families of RNA-binding proteins, including those with zinc finger CCCH motifs. CCCH zinc finger pro...

Full description

Bibliographic Details
Main Authors: Patricia Alves Mörking, Rita de Cássia Pontello Rampazzo, Pegine Walrad, Christian Macagnan Probst, Maurilio José Soares, Daniela Fiori Gradia, Daniela Parada Pavoni, Marco Aurélio Krieger, Keith Matthews, Samuel Goldenberg, Stenio Perdigão Fragoso, Bruno Dallagiovanna
Format: Article
Language:English
Published: Fundação Oswaldo Cruz (FIOCRUZ) 2012-09-01
Series:Memorias do Instituto Oswaldo Cruz
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0074-02762012000600014&lng=en&tlng=en
Description
Summary:Trypanosomes are parasitic protozoa in which gene expression is primarily controlled through the regulation of mRNA stability and translation. This post-transcriptional control is mediated by various families of RNA-binding proteins, including those with zinc finger CCCH motifs. CCCH zinc finger proteins have been shown to be essential to differentiation events in trypanosomatid parasites. Here, we functionally characterise TcZFP2 as a predicted post-transcriptional regulator of differentiation in Trypanosoma cruzi. This protein was detected in cell culture-derived amastigotes and trypomastigotes, but it was present in smaller amounts in metacyclic trypomastigote forms of T. cruzi. We use an optimised recombinant RNA immunopreciptation followed by microarray analysis assay to identify TcZFP2 target mRNAs. We further demonstrate that TcZFP2 binds an A-rich sequence in which the adenosine residue repeats are essential for high-affinity recognition. An analysis of the expression profiles of the genes encoding the TcZFP2-associated mRNAs throughout the parasite life cycle by microarray hybridisation showed that most of the associated mRNAs were upregulated in the metacyclic trypomastigote forms, also suggesting a role for TcZFP2 in metacyclic trypomastigote differentiation. Knockdown of the orthologous Trypanosoma brucei protein levels showed ZFP2 to be a positive regulator of specific target mRNA abundance.
ISSN:1678-8060