Congruences modulo $4$ for the number of $3$-regular partitions
The last decade has seen an abundance of congruences for $b_\ell (n)$, the number of $\ell $-regular partitions of $n$. Notably absent are congruences modulo $4$ for $b_3(n)$. In this paper, we introduce Ramanujan type congruences modulo $4$ for $b_3(2n)$ involving some primes $p$ congruent to $ 11,...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Académie des sciences
2023-11-01
|
Series: | Comptes Rendus. Mathématique |
Subjects: | |
Online Access: | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.512/ |
_version_ | 1797517885496623104 |
---|---|
author | Ballantine, Cristina Merca, Mircea |
author_facet | Ballantine, Cristina Merca, Mircea |
author_sort | Ballantine, Cristina |
collection | DOAJ |
description | The last decade has seen an abundance of congruences for $b_\ell (n)$, the number of $\ell $-regular partitions of $n$. Notably absent are congruences modulo $4$ for $b_3(n)$. In this paper, we introduce Ramanujan type congruences modulo $4$ for $b_3(2n)$ involving some primes $p$ congruent to $ 11, 13, 17, 19, 23$ modulo $24$. |
first_indexed | 2024-03-10T07:22:27Z |
format | Article |
id | doaj.art-afe215634f004e48888c3599e152f05e |
institution | Directory Open Access Journal |
issn | 1778-3569 |
language | English |
last_indexed | 2024-03-10T07:22:27Z |
publishDate | 2023-11-01 |
publisher | Académie des sciences |
record_format | Article |
series | Comptes Rendus. Mathématique |
spelling | doaj.art-afe215634f004e48888c3599e152f05e2023-11-22T14:31:30ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-11-01361G91577158310.5802/crmath.51210.5802/crmath.512Congruences modulo $4$ for the number of $3$-regular partitionsBallantine, Cristina0Merca, Mircea1Department of Mathematics and Computer Science, College of The Holy Cross, Worcester, MA 01610, USAAcademy of Romanian Scientists, RO-050044, Bucharest, Romania; Department of Mathematical Methods and Models, Fundamental Sciences Applied in Engineering Research Center, University Politehnica of Bucharest, RO-060042 Bucharest, RomaniaThe last decade has seen an abundance of congruences for $b_\ell (n)$, the number of $\ell $-regular partitions of $n$. Notably absent are congruences modulo $4$ for $b_3(n)$. In this paper, we introduce Ramanujan type congruences modulo $4$ for $b_3(2n)$ involving some primes $p$ congruent to $ 11, 13, 17, 19, 23$ modulo $24$.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.512/partitionsregular partitionscongruences |
spellingShingle | Ballantine, Cristina Merca, Mircea Congruences modulo $4$ for the number of $3$-regular partitions Comptes Rendus. Mathématique partitions regular partitions congruences |
title | Congruences modulo $4$ for the number of $3$-regular partitions |
title_full | Congruences modulo $4$ for the number of $3$-regular partitions |
title_fullStr | Congruences modulo $4$ for the number of $3$-regular partitions |
title_full_unstemmed | Congruences modulo $4$ for the number of $3$-regular partitions |
title_short | Congruences modulo $4$ for the number of $3$-regular partitions |
title_sort | congruences modulo 4 for the number of 3 regular partitions |
topic | partitions regular partitions congruences |
url | https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.512/ |
work_keys_str_mv | AT ballantinecristina congruencesmodulo4forthenumberof3regularpartitions AT mercamircea congruencesmodulo4forthenumberof3regularpartitions |