Congruences modulo $4$ for the number of $3$-regular partitions

The last decade has seen an abundance of congruences for $b_\ell (n)$, the number of $\ell $-regular partitions of $n$. Notably absent are congruences modulo $4$ for $b_3(n)$. In this paper, we introduce Ramanujan type congruences modulo $4$ for $b_3(2n)$ involving some primes $p$ congruent to $ 11,...

Full description

Bibliographic Details
Main Authors: Ballantine, Cristina, Merca, Mircea
Format: Article
Language:English
Published: Académie des sciences 2023-11-01
Series:Comptes Rendus. Mathématique
Subjects:
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.512/
_version_ 1797517885496623104
author Ballantine, Cristina
Merca, Mircea
author_facet Ballantine, Cristina
Merca, Mircea
author_sort Ballantine, Cristina
collection DOAJ
description The last decade has seen an abundance of congruences for $b_\ell (n)$, the number of $\ell $-regular partitions of $n$. Notably absent are congruences modulo $4$ for $b_3(n)$. In this paper, we introduce Ramanujan type congruences modulo $4$ for $b_3(2n)$ involving some primes $p$ congruent to $ 11, 13, 17, 19, 23$ modulo $24$.
first_indexed 2024-03-10T07:22:27Z
format Article
id doaj.art-afe215634f004e48888c3599e152f05e
institution Directory Open Access Journal
issn 1778-3569
language English
last_indexed 2024-03-10T07:22:27Z
publishDate 2023-11-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj.art-afe215634f004e48888c3599e152f05e2023-11-22T14:31:30ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692023-11-01361G91577158310.5802/crmath.51210.5802/crmath.512Congruences modulo $4$ for the number of $3$-regular partitionsBallantine, Cristina0Merca, Mircea1Department of Mathematics and Computer Science, College of The Holy Cross, Worcester, MA 01610, USAAcademy of Romanian Scientists, RO-050044, Bucharest, Romania; Department of Mathematical Methods and Models, Fundamental Sciences Applied in Engineering Research Center, University Politehnica of Bucharest, RO-060042 Bucharest, RomaniaThe last decade has seen an abundance of congruences for $b_\ell (n)$, the number of $\ell $-regular partitions of $n$. Notably absent are congruences modulo $4$ for $b_3(n)$. In this paper, we introduce Ramanujan type congruences modulo $4$ for $b_3(2n)$ involving some primes $p$ congruent to $ 11, 13, 17, 19, 23$ modulo $24$.https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.512/partitionsregular partitionscongruences
spellingShingle Ballantine, Cristina
Merca, Mircea
Congruences modulo $4$ for the number of $3$-regular partitions
Comptes Rendus. Mathématique
partitions
regular partitions
congruences
title Congruences modulo $4$ for the number of $3$-regular partitions
title_full Congruences modulo $4$ for the number of $3$-regular partitions
title_fullStr Congruences modulo $4$ for the number of $3$-regular partitions
title_full_unstemmed Congruences modulo $4$ for the number of $3$-regular partitions
title_short Congruences modulo $4$ for the number of $3$-regular partitions
title_sort congruences modulo 4 for the number of 3 regular partitions
topic partitions
regular partitions
congruences
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.512/
work_keys_str_mv AT ballantinecristina congruencesmodulo4forthenumberof3regularpartitions
AT mercamircea congruencesmodulo4forthenumberof3regularpartitions