The Amplification and Polarization Control of Transmitted Radiation by a Graphene-Containing Photonic Cell

The transformation of the transmission spectra of linearly polarized radiation passing through a symmetric photonic cell is studied based on numerical analysis. The cell consists of two layers of magnetic semiconductor with a graphene monolayer on each and a central dielectric layer located between...

Full description

Bibliographic Details
Main Authors: Svetlana V. Eliseeva, Pavel A. Itrin, Dmitrij I. Sementsov
Format: Article
Language:English
Published: MDPI AG 2023-11-01
Series:Photonics
Subjects:
Online Access:https://www.mdpi.com/2304-6732/10/12/1318
Description
Summary:The transformation of the transmission spectra of linearly polarized radiation passing through a symmetric photonic cell is studied based on numerical analysis. The cell consists of two layers of magnetic semiconductor with a graphene monolayer on each and a central dielectric layer located between the graphene monolayers. It is possible to achieve amplification in the near terahertz range in graphene layers due to charge carrier drift. Control of transmission spectra and polarization of transmitted radiation can be achieved by changing the Fermi energy of graphene layers, by changing the external magnetic field, and by changing the thickness of the dielectric layer and the orientation of the incident radiation polarization plane.
ISSN:2304-6732