Experimental and Numerical Simulation of the Dynamic Response of a Stiffened Panel Suffering the Impact of an Ice Indenter

At a laboratory scale, the response of a stiffened panel subjected to the impact of an ice indenter was studied by both experimental and numerical means. The experiment was conducted using a Falling Weight Impact Tester, and the impact force and deformation data of the stiffened panel were measured...

Full description

Bibliographic Details
Main Authors: Tongqiang Yu, Jiaxia Wang, Junjie Liu, Kun Liu
Format: Article
Language:English
Published: MDPI AG 2022-03-01
Series:Metals
Subjects:
Online Access:https://www.mdpi.com/2075-4701/12/3/505
Description
Summary:At a laboratory scale, the response of a stiffened panel subjected to the impact of an ice indenter was studied by both experimental and numerical means. The experiment was conducted using a Falling Weight Impact Tester, and the impact force and deformation data of the stiffened panel were measured and recorded. The experimental results showed that the ice indenter could cause significant indentation to the stiffened panel and experienced severe crushing and scattering itself. Finite element analysis was performed to reproduce the structural deformations in an appropriate manner, and a constitutive model with a multisurface yield criterion and a dynamic empirical failure criterion for ice material was developed. Good agreement was obtained, and the influences of various parameters in the constitutive model and the performance of other different material models are discussed. The purpose of this study is to present an experimental and numerical study on a scenario of high-energy collision between a hull structure and an ice block, the conclusions of which can be very useful for studying ship-ice collisions and guiding engineering applications.
ISSN:2075-4701