Biomimetic Engineering Preparation of High Mechanical and Flame Retardant Elastomers by Introducing Sacrificial Bonds in Covalently Cross-Linked Chloroprene Rubber

Designing and preparing chloroprene rubber (CR) with robust mechanical and excellent flame retardancy performance are challenging. In this work, a biomimetic design for high mechanical and flame-retardant CR by synchronous introducing of sacrificial bond (disulfide) crosslinked networks into the che...

Full description

Bibliographic Details
Main Authors: Jianliang Jiang, Junxue Zhai, Yiqun Zhang, Yakai Feng
Format: Article
Language:English
Published: MDPI AG 2023-08-01
Series:Polymers
Subjects:
Online Access:https://www.mdpi.com/2073-4360/15/16/3367
Description
Summary:Designing and preparing chloroprene rubber (CR) with robust mechanical and excellent flame retardancy performance are challenging. In this work, a biomimetic design for high mechanical and flame-retardant CR by synchronous introducing of sacrificial bond (disulfide) crosslinked networks into the chemically crosslinked network is developed based on two new types of vulcanization reactions. Under the catalysis of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">M</mi><mi mathvariant="normal">g</mi><msub><mrow><mo>(</mo><mi mathvariant="normal">O</mi><mi mathvariant="normal">H</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula>, the dynamic bond cross-linked network is formed by the reaction between the amino group of cystamine dihydrochloride (CA) and the allylic chlorine group of CR, while the covalently crosslinked network is synchronously formed by two types of nucleophilic substitution reactions in series between <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">M</mi><mi mathvariant="normal">g</mi><msub><mrow><mo>(</mo><mi mathvariant="normal">O</mi><mi mathvariant="normal">H</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msub><mo> </mo></mrow></semantics></math></inline-formula> and CR. The disulfide bonds serve as sacrificial bonds that preferentially rupture prior to the covalent network, dissipating energy and facilitating rubber chain orientation, so a CA-0.5 sample (CR/CA(0.5 wt%)/<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">M</mi><mi mathvariant="normal">g</mi><msub><mrow><mo>(</mo><mi mathvariant="normal">O</mi><mi mathvariant="normal">H</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> (10 wt%) with dual crosslinked networks exhibits excellent mechanical performance, and the tensile strength and elongation at the break of CA-0.5 are 1.41 times and 1.17 times greater than those of the CR-0 sample with covalently crosslinked networks, respectively. Moreover, the addition of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi mathvariant="normal">M</mi><mi mathvariant="normal">g</mi><msub><mrow><mo>(</mo><mi mathvariant="normal">O</mi><mi mathvariant="normal">H</mi><mo>)</mo></mrow><mrow><mn>2</mn></mrow></msub></mrow></semantics></math></inline-formula> significantly improves the flame retardancy of CR.
ISSN:2073-4360