Application of Ultrafiltration in a Paper Mill: Process Water Reuse and Membrane Fouling Analysis
High water consumption is a major environmental problem that the pulp and paper industry is facing. Ultrafiltration (UF) can be used to remove the dissolved and colloidal substances (DCS) concentrated during the recycling of white water (the process water) to facilitate the reuse of white water and...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
North Carolina State University
2015-02-01
|
Series: | BioResources |
Subjects: | |
Online Access: | http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_10_2_2376_Chen_Ultrafiltration_Paper_Mill |
Summary: | High water consumption is a major environmental problem that the pulp and paper industry is facing. Ultrafiltration (UF) can be used to remove the dissolved and colloidal substances (DCS) concentrated during the recycling of white water (the process water) to facilitate the reuse of white water and reduce fresh water consumption. However, membrane fouling limits the application of UF in this industry. In this study, super-clear filtrate obtained from a fine paper mill was purified with a polyethersulfone (PES) ultrafiltration membrane to evaluate the reuse performance of the ultrafiltrate. The membrane foulants were characterized by scanning electron microscopy, energy-dispersive spectrophotometry, attenuated total reflection-fourier transform infrared spectroscopy, and gas chromatography-mass spectrometry. The results indicate that the retention rate of stock and the strength properties of paper increased when the ultrafiltrate was reused in the papermaking process compared to when super-clear filtrate was used. The reversible membrane foulants during ultrafiltration accounted for 85.52% of the total foulants and primarily originated from retention aids, drainage aids, and wet strength resins, while the irreversible adsorptive foulants accounted for 14.48% and mostly came from sizing agents, coating chemicals, and others. Moreover, the presence of dissolved multivalent metal ions, especially Ca2+, accelerated membrane fouling. |
---|---|
ISSN: | 1930-2126 1930-2126 |