Intragenomic conflict in populations infected by Parthenogenesis Inducing <it>Wolbachia </it>ends with irreversible loss of sexual reproduction
<p>Abstract</p> <p>Background</p> <p>The maternally inherited, bacterial symbiont, parthenogenesis inducing (PI) <it>Wolbachia</it>, causes females in some haplodiploid insects to produce daughters from both fertilized and unfertilized eggs. The symbionts, w...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
BMC
2010-07-01
|
Series: | BMC Evolutionary Biology |
Online Access: | http://www.biomedcentral.com/1471-2148/10/229 |
_version_ | 1818789984882130944 |
---|---|
author | Stouthamer Richard Russell James E Vavre Fabrice Nunney Leonard |
author_facet | Stouthamer Richard Russell James E Vavre Fabrice Nunney Leonard |
author_sort | Stouthamer Richard |
collection | DOAJ |
description | <p>Abstract</p> <p>Background</p> <p>The maternally inherited, bacterial symbiont, parthenogenesis inducing (PI) <it>Wolbachia</it>, causes females in some haplodiploid insects to produce daughters from both fertilized and unfertilized eggs. The symbionts, with their maternal inheritance, benefit from inducing the production of exclusively daughters, however the optimal sex ratio for the nuclear genome is more male-biased. Here we examine through models how an infection with PI-<it>Wolbachia </it>in a previously uninfected population leads to a genomic conflict between PI-<it>Wolbachia </it>and the nuclear genome. In most natural populations infected with PI-<it>Wolbachia </it>the infection has gone to fixation and sexual reproduction is impossible, specifically because the females have lost their ability to fertilize eggs, even when mated with functional males.</p> <p>Results</p> <p>The PI <it>Wolbachia </it>infection by itself does not interfere with the fertilization process in infected eggs, fertilized infected eggs develop into biparental infected females. Because of the increasingly female-biased sex ratio in the population during a spreading PI-<it>Wolbachia </it>infection, sex allocation alleles in the host that cause the production of more sons are rapidly selected. In haplodiploid species a reduced fertilization rate leads to the production of more sons. Selection for the reduced fertilization rate leads to a spread of these alleles through both the infected and uninfected population, eventually resulting in the population becoming fixed for both the PI-<it>Wolbachia </it>infection and the reduced fertilization rate. Fertilization rate alleles that completely interfere with fertilization ("virginity alleles") will be selected over alleles that still allow for some fertilization. This drives the final resolution of the conflict: the irreversible loss of sexual reproduction and the complete dependence of the host on its symbiont.</p> <p>Conclusions</p> <p>This study shows that dependence among organisms can evolve rapidly due to the resolution of the conflicts between cytoplasmic and nuclear genes, and without requiring a mutualism between the partners.</p> |
first_indexed | 2024-12-18T14:48:15Z |
format | Article |
id | doaj.art-b02543a8856d45d3b9c4c738e2be5abc |
institution | Directory Open Access Journal |
issn | 1471-2148 |
language | English |
last_indexed | 2024-12-18T14:48:15Z |
publishDate | 2010-07-01 |
publisher | BMC |
record_format | Article |
series | BMC Evolutionary Biology |
spelling | doaj.art-b02543a8856d45d3b9c4c738e2be5abc2022-12-21T21:04:15ZengBMCBMC Evolutionary Biology1471-21482010-07-0110122910.1186/1471-2148-10-229Intragenomic conflict in populations infected by Parthenogenesis Inducing <it>Wolbachia </it>ends with irreversible loss of sexual reproductionStouthamer RichardRussell James EVavre FabriceNunney Leonard<p>Abstract</p> <p>Background</p> <p>The maternally inherited, bacterial symbiont, parthenogenesis inducing (PI) <it>Wolbachia</it>, causes females in some haplodiploid insects to produce daughters from both fertilized and unfertilized eggs. The symbionts, with their maternal inheritance, benefit from inducing the production of exclusively daughters, however the optimal sex ratio for the nuclear genome is more male-biased. Here we examine through models how an infection with PI-<it>Wolbachia </it>in a previously uninfected population leads to a genomic conflict between PI-<it>Wolbachia </it>and the nuclear genome. In most natural populations infected with PI-<it>Wolbachia </it>the infection has gone to fixation and sexual reproduction is impossible, specifically because the females have lost their ability to fertilize eggs, even when mated with functional males.</p> <p>Results</p> <p>The PI <it>Wolbachia </it>infection by itself does not interfere with the fertilization process in infected eggs, fertilized infected eggs develop into biparental infected females. Because of the increasingly female-biased sex ratio in the population during a spreading PI-<it>Wolbachia </it>infection, sex allocation alleles in the host that cause the production of more sons are rapidly selected. In haplodiploid species a reduced fertilization rate leads to the production of more sons. Selection for the reduced fertilization rate leads to a spread of these alleles through both the infected and uninfected population, eventually resulting in the population becoming fixed for both the PI-<it>Wolbachia </it>infection and the reduced fertilization rate. Fertilization rate alleles that completely interfere with fertilization ("virginity alleles") will be selected over alleles that still allow for some fertilization. This drives the final resolution of the conflict: the irreversible loss of sexual reproduction and the complete dependence of the host on its symbiont.</p> <p>Conclusions</p> <p>This study shows that dependence among organisms can evolve rapidly due to the resolution of the conflicts between cytoplasmic and nuclear genes, and without requiring a mutualism between the partners.</p>http://www.biomedcentral.com/1471-2148/10/229 |
spellingShingle | Stouthamer Richard Russell James E Vavre Fabrice Nunney Leonard Intragenomic conflict in populations infected by Parthenogenesis Inducing <it>Wolbachia </it>ends with irreversible loss of sexual reproduction BMC Evolutionary Biology |
title | Intragenomic conflict in populations infected by Parthenogenesis Inducing <it>Wolbachia </it>ends with irreversible loss of sexual reproduction |
title_full | Intragenomic conflict in populations infected by Parthenogenesis Inducing <it>Wolbachia </it>ends with irreversible loss of sexual reproduction |
title_fullStr | Intragenomic conflict in populations infected by Parthenogenesis Inducing <it>Wolbachia </it>ends with irreversible loss of sexual reproduction |
title_full_unstemmed | Intragenomic conflict in populations infected by Parthenogenesis Inducing <it>Wolbachia </it>ends with irreversible loss of sexual reproduction |
title_short | Intragenomic conflict in populations infected by Parthenogenesis Inducing <it>Wolbachia </it>ends with irreversible loss of sexual reproduction |
title_sort | intragenomic conflict in populations infected by parthenogenesis inducing it wolbachia it ends with irreversible loss of sexual reproduction |
url | http://www.biomedcentral.com/1471-2148/10/229 |
work_keys_str_mv | AT stouthamerrichard intragenomicconflictinpopulationsinfectedbyparthenogenesisinducingitwolbachiaitendswithirreversiblelossofsexualreproduction AT russelljamese intragenomicconflictinpopulationsinfectedbyparthenogenesisinducingitwolbachiaitendswithirreversiblelossofsexualreproduction AT vavrefabrice intragenomicconflictinpopulationsinfectedbyparthenogenesisinducingitwolbachiaitendswithirreversiblelossofsexualreproduction AT nunneyleonard intragenomicconflictinpopulationsinfectedbyparthenogenesisinducingitwolbachiaitendswithirreversiblelossofsexualreproduction |