Optimization Drift Support Design Based on Engineering Geological and Geotechnical Analysis in Deep Hard-Rock Mine: A Case Study

Geotechnical issues due to inappropriate support designs of underground drift will affect mining developments and production. The aim of this study was to provide a systematic support design method for deep hard-rock drifts in China. Field investigations and laboratory studies were carried out on th...

Full description

Bibliographic Details
Main Authors: Xingdong Zhao, Nan Zeng, Lei Deng, Qiankun Zhu, Yifan Zhao, Shanghuan Yang
Format: Article
Language:English
Published: MDPI AG 2022-10-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/12/20/10224
Description
Summary:Geotechnical issues due to inappropriate support designs of underground drift will affect mining developments and production. The aim of this study was to provide a systematic support design method for deep hard-rock drifts in China. Field investigations and laboratory studies were carried out on the engineering geological properties of the rock masses along drifts in the Sanshandao Gold Mine. Potential wedge analysis and safety factors were determined using Unwedge software. The rock mass properties and support requirements were analyzed accordingly using different rock mass classification systems; then, an updated combined support system including rock bolts, wire mesh, and shotcrete was proposed. Numerical methods were used to quantify the plastic zone and principal stress of the drift, the plastic zone was reduced, and the rock stress state was improved after installing the support systems. Field monitoring data also confirmed that the updated support system prevented excessive rock mass deformation in drift. This study provides a reliable method for deep hard-rock drift support at Sanshandao Gold Mine and will also be helpful for the optimization of subsequent support.
ISSN:2076-3417