Real-time prediction models for remaining cold start time in proton exchange membrane fuel cell based on stack temperature
In order to mitigate the irreversible damage caused by cold start and preserve cell performance, this paper proposes a real-time prediction method based on the remaining cold start time of the proton exchange membrane fuel cell (PEMFC). This method can protect the cell by referencing the current col...
المؤلفون الرئيسيون: | Huiying Zhang, Yuhang Wang, Suoying He, Ming Gao |
---|---|
التنسيق: | مقال |
اللغة: | English |
منشور في: |
Elsevier
2023-12-01
|
سلاسل: | Case Studies in Thermal Engineering |
الموضوعات: | |
الوصول للمادة أونلاين: | http://www.sciencedirect.com/science/article/pii/S2214157X23010006 |
مواد مشابهة
-
Machine Learning Prediction of Fuel Cell Remaining Life Enhanced by Variational Mode Decomposition and Improved Whale Optimization Algorithm
حسب: Zerong Huang, وآخرون
منشور في: (2024-09-01) -
A Review on Cold Start of Proton Exchange Membrane Fuel Cells
حسب: Zhongmin Wan, وآخرون
منشور في: (2014-05-01) -
Urban cold-chain logistics demand predicting model based on improved neural network model
حسب: Chen Ying, وآخرون
منشور في: (2020-01-01) -
A Flexible Two-Tower Model for Item Cold-Start Recommendation
حسب: Won-Min Lee, وآخرون
منشور في: (2023-01-01) -
Application of self-adaptive temperature recognition in cold-start of an air-cooled proton exchange membrane fuel cell stack
حسب: Xianxian Yu, وآخرون
منشور في: (2022-08-01)